Prediction of viscosities and vapor-liquid equilibria for five polyhydric alcohols by molecular simulation

Manish S. Kelkar, Jake L. Rafferty, Edward J. Maginn, J. Ilja Siepmann

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

Reverse nonequilibrium molecular dynamics in the canonical ensemble and coupled-decoupled configurational-bias Monte Carlo simulations in the Gibbs ensemble were used to predict the low-shear rate Newtonian viscosities and vapor-liquid coexistence curves for 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,2,4-butanetriol modeled with the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field. Comparison with available experimental data demonstrates that the TraPPE-UA force field yields very good predictions of the viscosities and vapor-liquid coexistence curves. A detailed analysis of liquid structure and hydrogen bonding is provided.

Original languageEnglish (US)
Pages (from-to)218-231
Number of pages14
JournalFluid Phase Equilibria
Volume260
Issue number2
DOIs
StatePublished - Nov 1 2007

Bibliographical note

Funding Information:
Financial support from the National Science Foundation (CTS-0553911), the Air Force Office of Scientific Research (F49620-03-1-0212), and a Graduate School and an Owens Fellowship (J.L.R.) are gratefully acknowledged. Computer resources were provided by the Minnesota Supercomputing Institute and the University of Notre Dame’s Center for Research Computing.

Keywords

  • Molecular simulation
  • Polyhydric alcohols
  • Thermo-physical property prediction
  • Vapor-liquid equilibria
  • Viscosity

Fingerprint

Dive into the research topics of 'Prediction of viscosities and vapor-liquid equilibria for five polyhydric alcohols by molecular simulation'. Together they form a unique fingerprint.

Cite this