Quantifying postural instability with pose estimation software and 3D depth extraction

Cara Piazza, Joseph Schroeder, Chiahao Lu, Arthur Erdman, Matthew Johnson, Scott E. Cooper

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Patients who suffer from Parkinson's Disease are more prone to postural instability, a major risk factor for falls. One of the most common clinical methods of gauging the severity of a patient's postural instability is with the retropulsion test [1], in which a clinician perturbs the balance of the patient and then rates their response to the perturbation. This test is subjective and largely based on the observations made by the clinician. In order to improve postural instability diagnosis and encourage more meaningful therapies for this cognitive-motor symptom, there is a clinical need to enable more objective, quantifiable approaches to measuring postural instability. In this paper, we describe a novel computational approach to quantifying the number, length, and trajectory of steps taken during a retropulsion test or other type of balance perturbation from a single camera facing the anterior side (front) of the subject. The computational framework involved first analyzing the video data using markerless pose estimation algorithms to track the movement of the subject's feet. These pixel data were then converted from 2D to 3D using calibrated transformation functions, and then analyzed for consistency when compared to the known step lengths. The testing data showed accurate step length estimation within 1 cm, which suggests this computational approach could have utility in a variety of clinical environments.

Original languageEnglish (US)
Title of host publicationProceedings of the 2021 Design of Medical Devices Conference, DMD 2021
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791884812
DOIs
StatePublished - 2021
Event2021 Design of Medical Devices Conference, DMD 2021 - Virtual, Online
Duration: Apr 12 2021Apr 15 2021

Publication series

NameProceedings of the 2021 Design of Medical Devices Conference, DMD 2021

Conference

Conference2021 Design of Medical Devices Conference, DMD 2021
CityVirtual, Online
Period4/12/214/15/21

Bibliographical note

Publisher Copyright:
© 2021 by ASME.

Fingerprint

Dive into the research topics of 'Quantifying postural instability with pose estimation software and 3D depth extraction'. Together they form a unique fingerprint.

Cite this