Quasiparticle conductance in spin valve Josephson structures

Evan Moen, Oriol T. Valls

Research output: Contribution to journalArticlepeer-review


We study the quasiparticle current in clean ferromagnetic Josephson structures of the form S1/F1/N/F2/S2, where S,F, and N denote superconducting, ferromagnetic, or normal layers, respectively. Our focus is on the structure of the conductance G as a function of bias V, emphasizing the subgap region. We use a fully self-consistent numerical method, coupled to a transfer matrix procedure to extract G(V). We choose material parameters appropriate to experimentally realized Co Cu Nb structures. We find a resonance peak structure as a function of the intermediate layer thickness and of the misalignment angle between F layers. To understand this resonance structure, we develop an approximate analytic method. For experimentally relevant thicknesses, the conductance has multiple subgap peaks, which oscillate in position between low and critical bias positions. These oscillations occur in both and the layer thicknesses. We compare our results with those obtained for the spin valve structures (F1/N/F2/S2) and discuss the implications of our results for the fabrication of spin Josephson devices.

Original languageEnglish (US)
Article number184522
JournalPhysical Review B
Issue number18
StatePublished - May 1 2020

Bibliographical note

Funding Information:
The authors thank I. N. Krivorotov (University of California, Irvine) for many illuminating discussions on the experimental issues. This work was supported in part by DOE Grant No. DE-SC0014467.

Publisher Copyright:
© 2020 American Physical Society.


Dive into the research topics of 'Quasiparticle conductance in spin valve Josephson structures'. Together they form a unique fingerprint.

Cite this