Recent history of trends in vegetation greenness and large-scale ecosystem disturbances in Eurasia

Christopher Potter, Vipin Kumar, Steven Klooster, Ramakrishna Nemani

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Recent patterns of land cover and vegetation dynamics on the Euasian continent have been linked to changes in the global carbon cycle. Our study was conducted to evaluate patterns in a 19-yr record of global satellite observations of terrestrial vegetation from the Advanced Very High Resolution Radiometer (AVHRR) as a means to characterize major trends in both vegetation 'greenness' and ecosystem disturbance. The fraction absorbed of photosynthetically active radiation (FPAR) by vegetation canopies worldwide has been computed from the AVHRR at a monthly time interval from 1982 to 2000 and gridded at a spatial resolution of 8 km globally. Unlike previous studies of the AVHRR multiyear time-series of vegetation dynamics, the 8-km spatial resolution makes it possible to compare disturbance events and greenness trends at the same level of spatial detail. Positive trends in FPAR were detected throughout a major greenbelt of central-eastern Europe starting in the mid-1980s. This Eurasian greenbelt extended in a wide swath over the Urals, into the vicinity of Lake Baykal south of the central Siberian plateau, mainly along a latitude belt from 55°N to 65°N. There was also significantly positive greening in relatively large areas of Great Britain, Italy, Greece, Turkey, the Caucasus and southern India. Nonetheless, a strong downward trend in the FPAR time-series over most of Eurasia was observed by the end of the 1990s. Throughout the 19-yr time period, Eurasia was also impacted by many notable droughts and other disturbance events that could have substantially offset decadal carbon gains attributed to satellite-observed greening. Large-scale ecosystems disturbance events were identified in the FPAR time-series by locating anomalously low values (FPAR-LO) that lasted longer than 12 consecutive months at any 8-km pixel. We find verifiable evidence of numerous disturbance types across Eurasia, including regional patterns of severe droughts, forest fires and insect outbreaks.

Original languageEnglish (US)
Pages (from-to)260-272
Number of pages13
JournalTellus, Series B: Chemical and Physical Meteorology
Volume59
Issue number2
DOIs
StatePublished - Apr 2007

Fingerprint

Dive into the research topics of 'Recent history of trends in vegetation greenness and large-scale ecosystem disturbances in Eurasia'. Together they form a unique fingerprint.

Cite this