Recruitment and derecruitment during acute respiratory failure: An experimental study

P. Pelosi, M. Goldner, A. McKibben, A. Adams, G. Eccher, P. Caironi, S. Losappio, L. Gattinoni, J. J. Marini

Research output: Contribution to journalArticlepeer-review

367 Scopus citations

Abstract

We aimed to elucidate the relationships between pleural (Ppl), esophageal (Pes), and superimposed gravitational pressures in acute lung injury, and to understand the mechanisms of recruitment and derecruitment. In six dogs with oleic acid respiratory failure, we measured Pes and Ppl in the uppermost, middle, and most dependent lung regions. Each dog was studied at positive end-expiratory pressure (PEEP) of 5 and 15 cm H2O and three levels of tidal volume (VT; low, medium, and high). For each PEEP-VT combination, we obtained a computed tomographic (CT) scan at end-inspiration and end-expiration. The variations of Ppl and Pes pressures were correlated (r = 0.86 ± 0.07, p < 0.0001), as was the vertical gradient of transpulmonary (PL) and superimposed pressure (r = 0.92, p < 0.0001). Recruitment proceeded continuously along the entire volume-pressure curve. Estimated threshold opening pressures were normally distributed (mode = 20 to 25 cm H2O). The amount of end-expiratory collapse at the same PEEP and PL was significantly lower when ventilation was performed at high VT. End-inspiratory and end-expiratory collapse were highly correlated (r = 0.86, p < 0.0001), suggesting that as more tissue is recruited at end-inspiration, more remains recruited at end-expiration. When superimposed pressure exceeded applied airway pressure (Paw), collapse significantly increased.

Original languageEnglish (US)
Pages (from-to)122-130
Number of pages9
JournalAmerican journal of respiratory and critical care medicine
Volume164
Issue number1
DOIs
StatePublished - Jul 1 2001

Keywords

  • ALI/ARDS
  • Computed tomography
  • Mechanical ventilation
  • Oleic acid
  • Volume pressure curve

Fingerprint Dive into the research topics of 'Recruitment and derecruitment during acute respiratory failure: An experimental study'. Together they form a unique fingerprint.

Cite this