Removal of airborne nanoparticles by membrane coated filters

Jingxian Liu, David Y.H. Pui, Jing Wang

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


The increasing amount of nanoparticles with the development of nanotechnology gives rise to concerns about potential negative impact on the environment and health hazards posed to humans. Membrane filter is an effective media to control nanoparticles. Three filters coated with polytetrafluoroethylene (PTFE) membrane were investigated in this study. A series of experiments on the filter efficiency and relevant parameters such as the particle size and face velocity were carried out. The data show that the efficiency curves for the membrane filters demonstrate the typical shape of "v" for particle sizes from 10 to 300. nm at face velocities from 0.3 to 15. cm/s. Membrane filters with larger pore sizes have larger Most Penetrating Particles Sizes (MPPS), and the MPPS decreases with increasing face velocity. The efficiencies decrease with increasing face velocity for particle sizes from 10 to 300. nm. We present the filtration efficiency data as a novel three-dimensional graph to illustrate its dependence on the particle size and face velocity. The membrane coated filter can be considered as two combined layers, one fibrous layer and one membrane layer. We develop a new filtration efficiency model which is a combination of the models for the two layers. Results from the model calculation agree with experimental data well. The study can help to optimize the filter product and to determine the operational parameters of filters, thus contributing to reduction of air pollution by rapidly emerging nanoparticles.

Original languageEnglish (US)
Pages (from-to)4868-4874
Number of pages7
JournalScience of the Total Environment
Issue number22
StatePublished - Oct 15 2011

Bibliographical note

Funding Information:
The work was partially supported by the National Institute of Environmental Health Sciences grant # 1RC2ES018741-01 (sub-grant 100029-D) on “Hazard Assessment and Risk Estimation of Inhaled Nanomaterials Exposure”. The authors thank the support of members of the Center for Filtration Research: 3M Corporation, Boeing Company, Cummins Filtration Inc., Donaldson Company, Inc., Entegris Inc, Hollingsworth & Vose Company, Samsung Semiconductor Inc., Shigematsu Works CO., LTD, TSI Inc., and W. L. Gore & Associates and the affiliate member National Institute for Occupational Safety and Health (NIOSH).


  • Face velocity
  • Filtration efficiency
  • Membrane filter
  • Model
  • Nanoparticle

Fingerprint Dive into the research topics of 'Removal of airborne nanoparticles by membrane coated filters'. Together they form a unique fingerprint.

Cite this