Retrieval of refractive index fields in two-dimensional gradient-index elements from external deflectometry data

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

In a previous work, we presented a numerical method for retrieving inhomogeneous refractive index fields in rectangular gradient-index elements from boundary positions and internal boundary slopes associated with a set of interrogating probe beams that transit the medium. The present work extends this method to external boundary beam slopes without knowledge of the refractive index along the surface of the optical element, requiring minimal additional information (outside of beam position and slope data) such as a single known index point inside the medium. The inverse problem is cast as a linear algebraic system describing the deflection of probe beams inside the optical material, and an iterative inversion algorithm is used to generate an index field that produces the boundary value data. By incorporating Snell's law into the system equation through surface values derived from tentative reconstructions of the refractive index, we show in simulation that a series of inversion cycles applied to the system equation accurately recovers the index profile used to generate the test data.

Original languageEnglish (US)
Pages (from-to)396-403
Number of pages8
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume33
Issue number3
DOIs
StatePublished - Mar 1 2016

Bibliographical note

Funding Information:
Defense Advanced Research Projects Agency (DARPA) (HQ0034-14-D-0001).

Publisher Copyright:
© 2016 Optical Society of America.

Fingerprint

Dive into the research topics of 'Retrieval of refractive index fields in two-dimensional gradient-index elements from external deflectometry data'. Together they form a unique fingerprint.

Cite this