Safe Charging for wireless power transfer

Haipeng Dai, Yunhuai Liu, Guihai Chen, Xiaobing Wu, Tian He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

89 Scopus citations

Abstract

As battery-powered mobile devices become more popular and energy hungry, wireless power transfer technology receives intensive interests, as it allows the power to be transferred from a charger to ambient devices wirelessly. The existing studies mainly focus on the power transfer efficiency but overlook the health impairments caused by RF exposure. In this paper, we study the Safe Charging Problem (SCP) of scheduling power chargers so that more energy can be received while no location in the field has electromagnetic radiation (EMR) exceeding a given threshold Rt. We prove that SCP is NP-hard and propose a solution which provably outperforms the optimal solution to SCP with a relaxed EMR threshold (1 - ε)Rt. Testbed results based on 8 Powercast TX91501 chargers validate our results. Extensive simulation results show that the gap between our solution and the optimal one is only 6.7% when ε = 0.1, while a naive greedy algorithm is 34.6% below our solution.

Original languageEnglish (US)
Title of host publicationIEEE INFOCOM 2014 - IEEE Conference on Computer Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1105-1113
Number of pages9
ISBN (Print)9781479933600
DOIs
StatePublished - Jan 1 2014
Event33rd IEEE Conference on Computer Communications, IEEE INFOCOM 2014 - Toronto, ON, Canada
Duration: Apr 27 2014May 2 2014

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X

Other

Other33rd IEEE Conference on Computer Communications, IEEE INFOCOM 2014
Country/TerritoryCanada
CityToronto, ON
Period4/27/145/2/14

Fingerprint

Dive into the research topics of 'Safe Charging for wireless power transfer'. Together they form a unique fingerprint.

Cite this