Safehidden: An efficient and secure information hiding technique using re-randomization

Zhe Wang, Chenggang Wu, Yinqian Zhang, Bowen Tang, Pen Chung Yew, Mengyao Xie, Yuanming Lai, Yan Kang, Yueqiang Cheng, Zhiping Shi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Information hiding (IH) is an important building block for many defenses against code reuse attacks, such as code-pointer integrity (CPI), control-flow integrity (CFI) and fine-grained code (re-)randomization, because of its effectiveness and performance. It employs randomization to probabilistically “hide” sensitive memory areas, called safe areas, from attackers and ensures their addresses are not leaked by any pointers directly. These defenses used safe areas to protect their critical data, such as jump targets and randomization secrets. However, recent works have shown that IH is vulnerable to various attacks. In this paper, we propose a new IH technique called SafeHidden. It continuously re-randomizes the locations of safe areas and thus prevents the attackers from probing and inferring the memory layout to find its location. A new thread-private memory mechanism is proposed to isolate the thread-local safe areas and prevent adversaries from reducing the randomization entropy. It also randomizes the safe areas after the TLB misses to prevent attackers from inferring the address of safe areas using cache side-channels. Existing IH-based defenses can utilize SafeHidden directly without any change. Our experiments show that SafeHidden not only prevents existing attacks effectively but also incurs low performance overhead.

Original languageEnglish (US)
Title of host publicationProceedings of the 28th USENIX Security Symposium
PublisherUSENIX Association
Pages1239-1256
Number of pages18
ISBN (Electronic)9781939133069
StatePublished - 2019
Event28th USENIX Security Symposium - Santa Clara, United States
Duration: Aug 14 2019Aug 16 2019

Publication series

NameProceedings of the 28th USENIX Security Symposium

Conference

Conference28th USENIX Security Symposium
Country/TerritoryUnited States
CitySanta Clara
Period8/14/198/16/19

Bibliographical note

Publisher Copyright:
© 2019 by The USENIX Association. All rights reserved.

Fingerprint

Dive into the research topics of 'Safehidden: An efficient and secure information hiding technique using re-randomization'. Together they form a unique fingerprint.

Cite this