Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles

C. J. Hogan, E. M. Kettleson, M. H. Lee, B. Ramaswami, L. T. Angenent, Pratim Biswas

Research output: Contribution to journalArticlepeer-review

124 Scopus citations

Abstract

Aims: The aerosolization and collection of submicrometre and ultrafine virus particles were studied with the objective of developing robust and accurate methodologies to study airborne viruses. Methods and Results: The collection efficiencies of three sampling devices used to sample airborne biological particles - the All Glass Impinger 30, the SKC BioSampler® and a frit bubbler - were evaluated for submicrometre and ultrafine virus particles. Test virus aerosol particles were produced by atomizing suspensions of single-stranded RNA and double-stranded DNA bacteriophages. Size distribution results show that the fraction of viruses present in typical aqueous virus suspensions is extremely low such that the presence of viruses has little effect on the particle size distribution of atomized suspensions. It has been found that none of the tested samplers are adequate in collecting submicrometre and ultrafine virus particles, with collection efficiencies for all samplers below 10% in the 30-100 nm size range. Plaque assays and particle counting measurements showed that all tested samplers have time-varying virus particle collection efficiencies. A method to determine the size distribution function of viable virus containing particles utilizing differential mobility selection was also developed. Conclusions: A combination of differential mobility analysis and traditional plaque assay techniques can be used to fully characterize airborne viruses. Significance and Impact of the Study: The data and methods presented here provide a fundamental basis for future studies of submicrometre and ultrafine airborne virus particles.

Original languageEnglish (US)
Pages (from-to)1422-1434
Number of pages13
JournalJournal of Applied Microbiology
Volume99
Issue number6
DOIs
StatePublished - 2005

Keywords

  • Aerosol sampling
  • Biological nanoparticles
  • Differential mobility analysis
  • Dosage
  • Virus aerosols

Fingerprint Dive into the research topics of 'Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles'. Together they form a unique fingerprint.

Cite this