Simple Caching Schemes for Non-homogeneous MISO Cache-Aided Communication via Convexity

Itsik Bergel, Soheil Mohajer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present a novel scheme for cache-aided communication over multiple-input and single output (MISO) cellular networks. The presented scheme achieves the same number of degrees of freedom as known coded caching schemes, but, at much lower complexity. The scheme is derived for communication systems with heterogeneous rates and finite signal-to-noise ratio, in which links are modeled by wideband fading channels. The base station is serving multiple users simultaneously, by sending a combination of several packets, each intended for one user. The interference is either suppressed using the cache content or nulled by zero-forcing at the unintended users. We focus on efficient coding schemes, which allow for a maximum number of users to be served throughout the course of communication. An achievable rate region is characterized by determining the extreme rate vectors satisfying an efficient transmission. The analysis results in a simple scheduling scheme and in a closed-form performance analysis.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4980-4984
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: May 4 2020May 8 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
CountrySpain
CityBarcelona
Period5/4/205/8/20

Keywords

  • Cache-aided communication
  • Finite SNR regime
  • MISO
  • Simple scheduling
  • Zero-forcing

Fingerprint Dive into the research topics of 'Simple Caching Schemes for Non-homogeneous MISO Cache-Aided Communication via Convexity'. Together they form a unique fingerprint.

Cite this