Solvent-Driven Gate Opening in MOF-76-Ce: Effect on CO2 Adsorption

Jayashree Ethiraj, Francesca Bonino, Jenny G. Vitillo, Kirill A. Lomachenko, Carlo Lamberti, Helge Reinsch, Karl Petter Lillerud, Silvia Bordiga

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

A cerium-based metal-organic framework with MOF-76 topology has been synthesized by a very simple and fast solvothermal method that has been tested for a one gram yield. Variable-temperature powder XRD and X-ray absorption data, analyzed by Rietveld and multiple-scattering extended X-ray absorption fine-structure methods, revealed high thermal stability and the presence of three different stable structures. X-ray absorption near-edge structure and FTIR spectroscopy probed the presence of cerium(III), which was characterized by coordinatively unsaturated sites that, however, played no major role in carbon dioxide adsorption. The material revealed excellent carbon dioxide adsorption properties: the highest gravimetric capacity of 15 wt% was observed at 1.1 bar in the case of the sample activated at 250 °C in vacuum, whereas the strongest interaction energy of 35 kJ mol-1 was observed for the sample activated at 150 °C. Negligible nitrogen uptake of the sample activated at 150 °C indicates that this material is a promising candidate for nitrogen/carbon dioxide separation purposes.

Original languageEnglish (US)
Pages (from-to)713-719
Number of pages7
JournalChemSusChem
Volume9
Issue number7
DOIs
StatePublished - Apr 7 2016

Bibliographical note

Publisher Copyright:
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA.

Keywords

  • X-ray diffraction
  • adsorption
  • carbon dioxide capture
  • cerium
  • metal-organic frameworks

Fingerprint

Dive into the research topics of 'Solvent-Driven Gate Opening in MOF-76-Ce: Effect on CO2 Adsorption'. Together they form a unique fingerprint.

Cite this