Solvent effects on the n→π* transition of pyrimidine in aqueous solution

Jiali Gao, Kyoungrim Byun

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

A hybrid quantum mechanical and molecular mechanical potential is used in Monte Carlo simulations to examine the solvent effects on the electronic excitation energy for the n → π* transition of pyrimidine in aqueous solution. In the present study, the pyrimidine molecule is described by the semi-empirical AMI model, while the solvent molecules are treated classically. Two sets of calculations are performed: the first involves the use of the pairwise three-point charge TIP3P model for water, and the second computation employs a polarizable many-body potential for the solvent. The latter calculation takes into account the effect of solvent polarization following the solute electronic excitation, and makes a correction to the energies determined using pairwise potentials, which neglects such fast polarization effects and overestimates the solute-solvent interactions on the Franck-Condon excited states. Our simulation studies of pyrimidine in water indicate that the solvent charge redistribution following the solute electronic excitation makes modest corrections (about -130 cm-1) to the energy predicted by using pairwise potentials. Specific hydrogen bonding interactions between pyrimidine and water are important for the prediction of solvatochromic shifts for pyrimidine. The computed n → π* blue shift is 2275 ± 110 cm-1, which may be compared with the experimental value (2700 cm-1) from isooctane to water.

Original languageEnglish (US)
Pages (from-to)151-156
Number of pages6
JournalTheoretical Chemistry Accounts
Volume96
Issue number3
DOIs
StatePublished - Jul 1997

Keywords

  • Hybrid quantum mechanical and molecular mechanical potential
  • Pyrimidine
  • Solvent effect

Fingerprint

Dive into the research topics of 'Solvent effects on the n→π* transition of pyrimidine in aqueous solution'. Together they form a unique fingerprint.

Cite this