Spontaneous and field-induced mesomorphism of a silyl-terminated bent-core liquid crystal as determined from second-harmonic generation and resonant X-ray scattering

C. L. Folcia, J. Ortega, J. Etxebarria, S. Rodríguez-Conde, G. Sanz-Enguita, K. Geese, C. Tschierske, V. Ponsinet, P. Barois, R. Pindak, Lidong Pan, Z. Q. Liu, B. K. McCoy, C. C. Huang

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The polarity and structure of the phases of a liquid crystal constituted by thiophene-based bent-core molecules is investigated by means of optical second-harmonic generation (SHG), and resonant and conventional X-ray diffraction. The material studied is representative of a wide family of mesogens that contain silyl groups at the ends of the chains. These bulky terminal groups have been reported to give rise to smectic phases showing ferroelectric switching. However, the analysis of the SHG signal before and after application of electric fields has allowed us to establish unambiguously that the reported ferroelectricity is not intrinsic to the material but stabilized by the cell substrates once an electric field has been applied. In addition, the results obtained from resonant X-ray diffraction indicate that virgin samples have antiferroelectric undulated synclinic smectic structures. This journal is

Original languageEnglish (US)
Pages (from-to)196-205
Number of pages10
JournalSoft Matter
Volume10
Issue number1
DOIs
StatePublished - Jan 7 2014

Fingerprint

Dive into the research topics of 'Spontaneous and field-induced mesomorphism of a silyl-terminated bent-core liquid crystal as determined from second-harmonic generation and resonant X-ray scattering'. Together they form a unique fingerprint.

Cite this