Stochastic Analysis of Reaction-Diffusion Processes

Jifeng Hu, Hye Won Kang, Hans G. Othmer

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction-diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems.

Original languageEnglish (US)
Pages (from-to)854-894
Number of pages41
JournalBulletin of mathematical biology
Volume76
Issue number4
DOIs
StatePublished - Apr 2014

Bibliographical note

Funding Information:
Acknowledgements Research supported in part by Grant # GM 29123 from the National Institutes of Health, and in part by the Mathematical Biosciences Institute and the National Science Foundation under grant DMS 0931642.

Keywords

  • Computational grid
  • Gillespie method
  • Stochastic analysis

Fingerprint

Dive into the research topics of 'Stochastic Analysis of Reaction-Diffusion Processes'. Together they form a unique fingerprint.

Cite this