Streptococcus gordonii Type I lipoteichoic acid contributes to surface protein biogenesis

Bruno P. Lima, Kelvin Kho, Brittany L. Nairn, Gunnel Svensäter, Ruoqiong Chen, Amanda Steffes, Gerrit W. Vreeman, Timothy C. Meredith, Mark C. Herzberg

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Lipoteichoic acid (LTA) is an abundant polymer of the Gram-positive bacterial cell envelope and is essential for many species. Whereas the exact function of LTA has not been elucidated, loss of LTA in some species affects hydrophobicity, biofilm formation, and cell division. Using a viable LTA-deficient strain of the human oral commensal Streptococcus gordonii, we demonstrated that LTA plays an important role in surface protein presentation. Cell wall fractions derived from the wildtype and LTA-deficient strains of S. gordonii were analyzed using label-free mass spectroscopy. Comparisons showed that the abundances of many proteins differed, including (i) SspA, SspB, and S. gordonii 0707 (SGO_0707) (biofilm formation); (ii) FtsE (cell division); (iii) Pbp1a and Pbp2a (cell wall biosynthesis and remodeling); and (iv) DegP (envelope stress response). These changes in cell surface protein presentation appear to explain our observations of altered cell envelope homeostasis, biofilm formation,and adhesion to eukaryotic cells, without affecting binding and coaggregation with other bacterial species, and provide insight into the phenotypes revealed by the loss of LTA in other species of Gram-positive bacteria. We also characterized the chemical structure of the LTA expressed by S. gordonii. Similarly to Streptococcus suis, S. gordonii produced a complex type I LTA, decorated with multiple Dalanylations and glycosylations. Hence, the S. gordonii LTA appears to orchestrate expression and presentation of cell surface-associated proteins and functions.

Original languageEnglish (US)
Article numbere00814
JournalmSphere
Volume4
Issue number6
DOIs
StatePublished - 2019

Bibliographical note

Publisher Copyright:
© 2019 Lima et al.

Keywords

  • Cell wall
  • Gram-positive bacteria
  • LTA
  • Lipoteichoic acid
  • Streptococcus gordonii
  • Surface proteins

Fingerprint

Dive into the research topics of 'Streptococcus gordonii Type I lipoteichoic acid contributes to surface protein biogenesis'. Together they form a unique fingerprint.

Cite this