Strongly chaotic non-newtonian mantle convection

A. V. Malevsky, David A Yuen

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

We have studied the problem of strongly timedependent, twodimensional, incompressible, infinite Prandtl number thermal convection in an aspect-ratio five box for a non-Newtonian power-law rheology and a heated from below configuration, as applied to mantle dynamics. The convection equations are solved by means of a characteristics-based method with a Lagrangian formulation of the total derivative in the energy equation. Iterations are required at each time step for solving the nonlinear momentum equation. Bicubic splines are used for the spatial discretization. The transition from mildly timedependent to the strongly chaotic or turbulent regime, in which the plumes become disconnected, occurs at much lower Nusselt numbers (Nu), between 20 and 25, than for Newtonian rheology. The Nu versus Rayleigh number (Ra) relationship displays a kink at this transition. Rising non-Newtonian plumes exhibit much greater curvature in their ascent than Newtonian ones and are strongly attracted by descending currents at the top. The viscosity field becomes strongly mixed and assumes a granular character in the turbulent regime. Horizontal spectral decomposition of the viscosity field outside the boundary layer shows that in the chaotic regime the fluctuations about the mean viscosity do not vary by more than an order of magnitude for one and a half decade in horizontal wavenumber. Vorticity fields produced by non-Newtonian convection are much more intense than Newtonian. Increasing the power law index sharpens the chaotic behavior of the flow with high Ra.

Original languageEnglish (US)
Pages (from-to)149-171
Number of pages23
JournalGeophysical & Astrophysical Fluid Dynamics
Volume65
Issue number1-4
DOIs
StatePublished - Jul 1992

Bibliographical note

Funding Information:
This research was supported by the Innovative Research Program of N.A.S.A. This work was also supported in part by the Army High Performance Computer Research Center. A. Malevsky has been the recipient of a Minnesota Supercomputer Institute visiting scholarship. We thank Uli Christensen and Peter van Keken for sending their test results and Alison M. Leitch for helpful comments. We are grateful to Uli Christensen for providing a very thorough and comprehensive review. We also thank Laura M. Weyer and Melanee Lundgren for help in preparing this manuscript.

Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.

Keywords

  • Nonlinear rheology
  • hard turbulence, mantle convection

Fingerprint Dive into the research topics of 'Strongly chaotic non-newtonian mantle convection'. Together they form a unique fingerprint.

Cite this