Symmetric fracton matter: Twisted and enriched

Yizhi You, Trithep Devakul, F. J. Burnell, S. L. Sondhi

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

In this paper, we explore the interplay between symmetry and fracton order, motivated by the analogous close relationship for topologically ordered systems. Specifically, we consider models with 3D planar subsystem symmetry, and show that these can realize subsystem symmetry protected topological phases with gapless boundary modes. Gauging the planar subsystem symmetry leads to a fracton order in which particles restricted to move along lines exhibit a new type of statistical interaction that is specific to the lattice geometry. We show that both the gapless boundary modes of the ungauged theory, and the statistical interactions after gauging, are naturally captured by a higher-rank version of Chern–Simons theory. We also show that gauging only part of the subsystem symmetry can lead to symmetry-enriched fracton orders, with quasiparticles carrying fractional symmetry charge.

Original languageEnglish (US)
Article number168140
JournalAnnals of Physics
Volume416
DOIs
StatePublished - May 2020

Bibliographical note

Funding Information:
YY is supported by a PCTS Fellowship at Princeton University. FJB is grateful for the financial support of NSF-DMR1352271 and the Sloan FoundationFG-2015-65927.

Funding Information:
YY is supported by a PCTS Fellowship at Princeton University . FJB is grateful for the financial support of NSF-DMR 1352271 and the Sloan Foundation FG-2015-65927 .

Publisher Copyright:
© 2020 Elsevier Inc.

Keywords

  • Fracton
  • Higher rank gauge theory
  • Topological phase

Fingerprint Dive into the research topics of 'Symmetric fracton matter: Twisted and enriched'. Together they form a unique fingerprint.

Cite this