Synthesis of a variable displacement linkage for a hydraulic transformer

Shawn R Wilhelm, James D. Van De Ven

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

A hydraulic pump/motor with high efficiency at low displacements is required for a compressed air energy storage system that utilizes a liquid piston for near-isothermal compression. To meet this requirement, a variable displacement six-bar crank-rocker-slider mechanism, which goes to zero displacement with a constant top dead center position, has been designed. The synthesis technique presented in the paper develops the range of motion for the base four-bar crank-rocker, creates a method of synthesizing the output slider dyad, and analyzes the mechanisms performance in terms of transmission angles, slider stroke, mechanism footprint, and timing ratio. It is shown that slider transmission angles can be kept above 60 degrees and the base four-bar transmission angles can be controlled in order to improve overall efficiency. This synthesis procedure constructs a crank-rocker-slider mechanism for a variable displacement pump/motor that can be efficient throughout all displacements.

Original languageEnglish (US)
Title of host publicationASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
Pages309-316
Number of pages8
EditionPARTS A AND B
DOIs
StatePublished - 2011
Externally publishedYes
EventASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011 - Washington, DC, United States
Duration: Aug 28 2011Aug 31 2011

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
NumberPARTS A AND B
Volume6

Other

OtherASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
Country/TerritoryUnited States
CityWashington, DC
Period8/28/118/31/11

Fingerprint

Dive into the research topics of 'Synthesis of a variable displacement linkage for a hydraulic transformer'. Together they form a unique fingerprint.

Cite this