Targeted delivery of antisense oligodeoxynucleotide by transferrin conjugated pH-sensitive lipopolyplex nanoparticles: A novel oligonucleotide- based therapeutic strategy in acute myeloid leukemia

Yan Jin, Shujun Liu, Bo Yu, Sharon Golan, Chee Guan Koh, Jintao Yang, Lenguyen Huynh, Xiaojuan Yang, Jiuxia Pang, Natarajan Muthusamy, Kenneth K. Chan, John C. Byrd, Yeshayahu Talmon, L. James Lee, Robert J. Lee, Guido Marcucci

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Therapeutic use of oligodeoxynucleotides (ODNs) that hybridize to and downregulate target mRNAs encoding proteins that contribute to malignant transformation has a sound rationale, but has had an overall limited clinical success in cancer due to insufficient intracellular delivery. Here we report a development of formulations capable of promoting targeted delivery and enhanced pharmacologic activity of ODNs in acute myeloid leukemia (AML) cell lines and patient primary cells. In this study, transferrin (Tf) conjugated pH-sensitive lipopolyplex nanoparticles (LPs) were prepared to deliver GTI-2040, an antisense ODN against the R2 subunit of ribonucleotide reductase that has been shown to contribute to chemoresistance in AML. LPs had an average particle size around 110 nm and a moderately positive zeta potential at ∼ 10 mV. The ODN encapsulation efficiency of LPs was > 90%. These nanoparticles could release ODNs at acidic endosomal pH and facilitate the cytoplasmic delivery of ODNs after endocytosis. In addition, Tf-mediated targeted delivery of GTI-2040 was achieved. R2 downregulation at both mRNA and protein levels was improved by 8-fold in Kasumi-1 cells and 2- to 20-fold in AML patient primary cells treated with GTI-2040-Tf-LPs, compared to free GTI-2040 treatment. Moreover, Tf-LPs were more effective than nontargeted LPs, with 10 to 100% improvement at various concentrations in Kasumi-1 cells and an average of 45% improvement at 3 μM concentration in AML patient primary cells. Treatment with 1 μM GTI-2040-Tf-LPs sensitized AML cells to the chemotherapy agent cytarabine, by decreasing its IC50 value from 47.69 nM to 9.05 nM. This study suggests that the combination of pH sensitive LP formulation and Tf mediated targeting is a promising strategy for antisense ODN delivery in leukemia therapy.

Original languageEnglish (US)
Pages (from-to)196-206
Number of pages11
JournalMolecular pharmaceutics
Volume7
Issue number1
DOIs
StatePublished - Feb 1 2010

Keywords

  • Acute myeloid leukemia
  • Anti-sense
  • GTI-2040
  • Lipopolyplex nanoparticles
  • Oligodeoxynucleotides
  • Transferrin

Fingerprint Dive into the research topics of 'Targeted delivery of antisense oligodeoxynucleotide by transferrin conjugated pH-sensitive lipopolyplex nanoparticles: A novel oligonucleotide- based therapeutic strategy in acute myeloid leukemia'. Together they form a unique fingerprint.

Cite this