The behavior of the tracer diffusion coefficient of polystyrene in isorefractive "solvents" composed of poly(vinyl methyl ether) and o-Fluorotoluene

Brian Hanley, Matthew Tirrell, Timothy Lodge

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

In this paper, we describe and use a relatively new technique - dynamic light scattering from refractive index-matched ternary solutions-to study a quantity very closely related to the self-diffusion coefficient in binary systems. We refer to this quantity as the tracer diffusion coefficient. This tracer diffusion coefficient is expected to behave in much the same way as the self-diffusion coefficient, in terms of its concentration and molecular weight dependencies. In this study, we use two compatible polymers, polystyrene and poly(vinyl methyl ether), and a solvent, o-fluorotoluene, chosen specifically because its refractive index matches that of the poly(vinyl methyl ether). The technique is advantageous in that it allows the experimenter to vary independently the molecular weight of both the probe and "invisible" matrix polymers, their individual molecular topologies, and the overall polymer concentration with relative ease. No special chemical tagging is required, although it must be borne in mind that we are not measuring self-diffusion but the diffusion of a dissimilar tracer. Our experiments probe the diffusion of linear polystyrenes in matrices composed of linear poly(vinyl methyl ether)/o-fluorotoluene. Our results show a crossover from non-free draining (Zimm) to free draining (Rouse) hydrodynamic behavior of polystyrene as the concentration of the invisible poly(vinyl methyl ether) making up the matrix is increased.

Original languageEnglish (US)
Pages (from-to)137-142
Number of pages6
JournalPolymer Bulletin
Volume14
Issue number2
DOIs
StatePublished - Aug 1985

Fingerprint

Dive into the research topics of 'The behavior of the tracer diffusion coefficient of polystyrene in isorefractive "solvents" composed of poly(vinyl methyl ether) and o-Fluorotoluene'. Together they form a unique fingerprint.

Cite this