The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation

Jinglin L. Xie, Longguang Qin, Zhengqiang Miao, Ben T. Grys, Jacinto De La Cruz Diaz, Kenneth Ting, Jonathan R. Krieger, Jiefei Tong, Kaeling Tan, Michelle D. Leach, Troy Ketela, Michael F. Moran, Damian J. Krysan, Charles Boone, Brenda J. Andrews, Anna Selmecki, Koon Ho Wong, Nicole Robbins, Leah E. Cowen

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

The capacity to coordinate environmental sensing with initiation of cellular responses underpins microbial survival and is crucial for virulence and stress responses in microbial pathogens. Here we define circuitry that enables the fungal pathogen Candida albicans to couple cell cycle dynamics with responses to cell wall stress induced by echinocandins, a front-line class of antifungal drugs. We discover that the C. albicans transcription factor Cas5 is crucial for proper cell cycle dynamics and responses to echinocandins, which inhibit β-1,3-glucan synthesis. Cas5 has distinct transcriptional targets under basal and stress conditions, is activated by the phosphatase Glc7, and can regulate the expression of target genes in concert with the transcriptional regulators Swi4 and Swi6. Thus, we illuminate a mechanism of transcriptional control that couples cell wall integrity with cell cycle regulation, and uncover circuitry governing antifungal drug resistance.

Original languageEnglish (US)
Article number499
JournalNature communications
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 The Author(s).

Fingerprint

Dive into the research topics of 'The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation'. Together they form a unique fingerprint.

Cite this