TY - CONF
T1 - The impact of the near-tip logic on the accuracy and convergence rate of hydraulic fracture simulators compared to reference solutions
AU - Lecampion, Brice
AU - Peirce, Anthony
AU - Detournay, Emmanuel
AU - Zhang, Xi
AU - Chen, Zuorong
AU - Bunger, Andrew
AU - Detournay, Christine
AU - Napier, John
AU - Abbas, Safdar
AU - Garagash, Dmitry
AU - Cundall, Peter
N1 - Publisher Copyright:
© 2013 Lecampion et al.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - We benchmark a series of simulators against available reference solutions for propagating plane-strain and radial hydraulic fractures. In particular, we focus on the accuracy and convergence of the numerical solutions in the important practical case of viscosity dominated propagation. The simulators are based on different propagation criteria: linear elastic fracture mechanics (LEFM), cohesive zone models/tensile strength criteria, and algorithms accounting for the multi-scale nature of hydraulic fracture propagation in the near-tip region. All the simulators tested here are able to capture the analytical solutions of the different configurations tested, but at vastly different computational costs. Algorithms based on the classical LEFM propagation condition require a fine mesh in order to capture viscosity dominated hydraulic fracture evolution. Cohesive zone models, which model the fracture process zone, require even finer meshes to obtain the same accuracy. By contrast, when the algorithms use the appropriate multi-scale hydraulic fracture asymptote in the near-tip region, the exact solution can be matched accurately with a very coarse mesh. The different analytical reference solutions used in this paper provide a crucial series of benchmark tests that any successful hydraulic fracturing simulator should pass.
AB - We benchmark a series of simulators against available reference solutions for propagating plane-strain and radial hydraulic fractures. In particular, we focus on the accuracy and convergence of the numerical solutions in the important practical case of viscosity dominated propagation. The simulators are based on different propagation criteria: linear elastic fracture mechanics (LEFM), cohesive zone models/tensile strength criteria, and algorithms accounting for the multi-scale nature of hydraulic fracture propagation in the near-tip region. All the simulators tested here are able to capture the analytical solutions of the different configurations tested, but at vastly different computational costs. Algorithms based on the classical LEFM propagation condition require a fine mesh in order to capture viscosity dominated hydraulic fracture evolution. Cohesive zone models, which model the fracture process zone, require even finer meshes to obtain the same accuracy. By contrast, when the algorithms use the appropriate multi-scale hydraulic fracture asymptote in the near-tip region, the exact solution can be matched accurately with a very coarse mesh. The different analytical reference solutions used in this paper provide a crucial series of benchmark tests that any successful hydraulic fracturing simulator should pass.
UR - http://www.scopus.com/inward/record.url?scp=85010438880&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85010438880&partnerID=8YFLogxK
U2 - 10.5772/56212
DO - 10.5772/56212
M3 - Paper
AN - SCOPUS:85010438880
SP - 855
EP - 873
T2 - ISRM International Conference for Effective and Sustainable Hydraulic Fracturing 2013
Y2 - 20 May 2013 through 22 May 2013
ER -