The prolyl isomerase Pin1 interacts with a ribosomal protein S6 kinase to enhance insulin-induced AP-1 activity and cellular transformation

Na Yeon Lee, Hoo Kyun Choi, Jung Hyun Shim, Keon Wook Kang, Zigang Dong, Hong Seok Choi

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Phosphorylation of proteins on serine or threonine residues that immediately precede proline (pSer/Thr-Pro) is specifically catalyzed by the peptidyl-prolyl cis-trans isomerase Pin1 and is a central signaling mechanism in cell proliferation and transformation. Although Pin1 is frequently overexpressed in hepatocellular carcinoma (HCC), the molecular mechanism of Pin1 in HCC has not been completely elucidated. Here, we show that Pin1 interacts with p70S6K in vitro and ex vivo. Overexpression of Pin1 resulted in enhanced p70S6K phosphorylation induced by insulin in SK-HEP-1 cells. In contrast, Pin1-/- mouse embryonic fibroblasts (MEFs) exhibited significantly decreased insulin-induced p70S6K phosphorylation compared with Pin1+/+ MEFs. Furthermore, Pin1 enhanced the insulin-induced extracellular signal-regulated protein kinase (ERK)1/2 phosphorylation through its interaction with p70S6K, whereas the inhibition of p70S6K activity by rapamycin suppressed insulin-induced ERK1/2 phosphorylation in SK-HEP-1 cells. Hence, Pin1 affected activator protein-1 activity through p70S6K-ERK1/2 signaling in SK-HEP-1 cells. Most importantly, Pin1-overexpressing JB6 Cl41 cells enhanced neoplastic cell transformation promoted by insulin much more than green fluorescent protein-overexpressing JB6 Cl41 control cells. These results imply that Pin1 amplifies insulin signaling in hepatocarcinoma cells through its interaction with p70S6K, suggesting that Pin1 plays an important role in insulin-induced tumorigenesis and is a potential therapeutic target in hepatocarcinoma.

Original languageEnglish (US)
Pages (from-to)671-681
Number of pages11
JournalCarcinogenesis
Volume30
Issue number4
DOIs
StatePublished - 2009

Bibliographical note

Funding Information:
Korea Science and Engineering Foundation grant funded by the Korea government (MEST) through the Research Center for Resistant Cells (R13-2003-009).

Fingerprint

Dive into the research topics of 'The prolyl isomerase Pin1 interacts with a ribosomal protein S6 kinase to enhance insulin-induced AP-1 activity and cellular transformation'. Together they form a unique fingerprint.

Cite this