The thrombin receptor links brain derived neurotrophic factor to neuron cholesterol production, resiliency and repair after spinal cord injury

Erin M. Triplet, Ha Neui Kim, Hyesook Yoon, Maja Radulovic, Laurel Kleppe, Whitney L. Simon, Chan il Choi, Patrick J. Walsh, James R. Dutton, Isobel A. Scarisbrick

Research output: Contribution to journalArticlepeer-review

Abstract

Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.

Original languageEnglish (US)
Article number105294
JournalNeurobiology of Disease
Volume152
DOIs
StatePublished - May 2021

Bibliographical note

Funding Information:
Studies were supported by the National Institutes of Health R01NS052741–10 , an Accelerated Regenerative Medicine Award from the Mayo Clinic Center for Regenerative Medicine (IAS) and the Minnesota State Spinal Cord Injury and Traumatic Brain Injury Research Program (IAS and JRD) . HNK was supported by a fellowship from the Mayo Clinic Center for MS and Autoimmune Neurology and EMT was supported by the National Institute of General Medical Sciences ( T32 GM 65841 ).

Publisher Copyright:
© 2021 The Author(s)

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'The thrombin receptor links brain derived neurotrophic factor to neuron cholesterol production, resiliency and repair after spinal cord injury'. Together they form a unique fingerprint.

Cite this