The ties that bind: functional clusters in limb-girdle muscular dystrophy

Elisabeth R. Barton, Christina A. Pacak, Whitney L. Stoppel, Peter B. Kang

Research output: Contribution to journalReview articlepeer-review

17 Scopus citations

Abstract

The limb-girdle muscular dystrophies (LGMDs) are a genetically pleiomorphic class of inherited muscle diseases that are known to share phenotypic features. Selected LGMD genetic subtypes have been studied extensively in affected humans and various animal models. In some cases, these investigations have led to human clinical trials of potential disease-modifying therapies, including gene replacement strategies for individual subtypes using adeno-associated virus (AAV) vectors. The cellular localizations of most proteins associated with LGMD have been determined. However, the functions of these proteins are less uniformly characterized, thus limiting our knowledge of potential common disease mechanisms across subtype boundaries. Correspondingly, broad therapeutic strategies that could each target multiple LGMD subtypes remain less developed. We believe that three major "functional clusters"of subcellular activities relevant to LGMD merit further investigation. The best known of these is the glycosylation modifications associated with the dystroglycan complex. The other two, mechanical signaling and mitochondrial dysfunction, have been studied less systematically but are just as promising with respect to the identification of significant mechanistic subgroups of LGMD. A deeper understanding of these disease pathways could yield a new generation of precision therapies that would each be expected to treat a broader range of LGMD patients than a single subtype, thus expanding the scope of the molecular medicines that may be developed for this complex array of muscular dystrophies.

Original languageEnglish (US)
Article numbers13395-020-00240-7
JournalSkeletal muscle
Volume10
Issue number1
DOIs
StatePublished - Jul 29 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 The Author(s).

Fingerprint

Dive into the research topics of 'The ties that bind: functional clusters in limb-girdle muscular dystrophy'. Together they form a unique fingerprint.

Cite this