Towards minimal tardiness of data-intensive applications in heterogeneous networks

Tong Li, Ke Xu, Meng Sheng, Haiyang Wang, Kun Yang, Yuchao Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The increasing data requirement of Internet applications has driven a dramatic surge in developing new programming paradigms and complex scheduling algorithms to handle data-intensive workloads. Due to the expanding volume and the variety of such flows, their raw data are often processed on intermediate processing nodes before being sent to servers. The intermediate processing constraints are however not yet considered in existing task and flow computing models. In this paper, we aim to minimize the total tardiness of all flows in the presence of intermediate processing constraints. We build a model to consider Tardiness-aware Flow Scheduling with Processing constraints (TFS-P), which is unfortunately NP-Hard. Hence, we propose a heuristic Routing and Scheduling duplex MATching (RSMAT) framework based on the classic Gale-Shapley Matching Theory. We find that the problem can be well-addressed by classic Deferred Acceptance (DA) algorithm, in which the match is stable but inefficient for the model. We therefore propose the Tardiness-aware Deferred Acceptance algorithm with Dynamical Quota (TDA-DQ). This algorithm is enhanced by overcoming the inefficient stability and smartly considering the dynamical quota in the system. The evaluation compares TDA-DQ to the lower bound obtained by a modified subgradient optimization algorithm. The result indicates that TDA-DQ can achieve near-optimal performance for data-intensive applications.

Original languageEnglish (US)
Title of host publication2016 25th International Conference on Computer Communications and Networks, ICCCN 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509022793
DOIs
StatePublished - Sep 14 2016
Event25th International Conference on Computer Communications and Networks, ICCCN 2016 - Waikoloa, United States
Duration: Aug 1 2016Aug 4 2016

Publication series

Name2016 25th International Conference on Computer Communications and Networks, ICCCN 2016

Other

Other25th International Conference on Computer Communications and Networks, ICCCN 2016
Country/TerritoryUnited States
CityWaikoloa
Period8/1/168/4/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Keywords

  • Data-intensive Application
  • Heterogeneous Network
  • Matching Theory

Fingerprint

Dive into the research topics of 'Towards minimal tardiness of data-intensive applications in heterogeneous networks'. Together they form a unique fingerprint.

Cite this