Turning an aptamer into a light-switch probe with a single bioconjugation

Thakshila M. Wickramaratne, Valerie C. Pierre

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We describe a method for transforming a structure-switching aptamer into a luminescent light-switch probe via a single conjugation. The methodology is demonstrated using a known aptamer for Hg2+ as a case study. This approach utilizes a lanthanide-based metallointercalator, Eu-DOTA-Phen, whose luminescence is quenched almost entirely and selectively by purines, but not at all by pyrimidines. This complex, therefore, does not luminesce while intercalated in dsDNA, but it is bright red when conjugated to a ssDNA that is terminated by several pyrimidines. In its design, the light-switch probe incorporates a structure-switching aptamer partially hybridized to its complementary strand. The lanthanide complex is conjugated to either strand via a stable amide bond. Binding of the analyte by the structure-switching aptamer releases the complementary strand. This release precludes intercalation of the intercalator in dsDNA, which switches on its luminescence. The resulting probe turns on 21-fold upon binding to its analyte. Moreover, the structure switching aptamer is highly selective, and the long luminescence lifetime of the probe readily enables time-gating experiments for removal of the background autofluorescence of the sample. (Figure Presented).

Original languageEnglish (US)
Pages (from-to)63-70
Number of pages8
JournalBioconjugate Chemistry
Volume26
Issue number1
DOIs
StatePublished - Jan 21 2015

Bibliographical note

Publisher Copyright:
© 2014 American Chemical Society.

Fingerprint Dive into the research topics of 'Turning an aptamer into a light-switch probe with a single bioconjugation'. Together they form a unique fingerprint.

Cite this