Two-dimensional materials for electronic, photonic, spintronic and sensing applications

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Two-dimensional (2D) materials are a broad family of layered crystals characterized by strong intra-layer bonds, but with weak inter-layer coupling dominated by van der Waals forces. These characteristics allow 2D materials to be either exfoliated or grown with atom-scale thickness. A wide range of 2D materials exist [1], including graphene, transition metal dichalcogenides (TMDs), black phosphorus (BP) and many others. While these materials have generated a great deal of excitement in the scientific community, many of the applications where these materials can truly provide a benefit compared to state-of-the-art solutions remain unclear. Here, I will describe our work on 2D materials, and will specifically describe how we have attempted to identify applications for which these materials are best suited.

Original languageEnglish (US)
Title of host publication74th Annual Device Research Conference, DRC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509028276
DOIs
StatePublished - Aug 22 2016
Event74th Annual Device Research Conference, DRC 2016 - Newark, United States
Duration: Jun 19 2016Jun 22 2016

Publication series

NameDevice Research Conference - Conference Digest, DRC
Volume2016-August
ISSN (Print)1548-3770

Other

Other74th Annual Device Research Conference, DRC 2016
Country/TerritoryUnited States
CityNewark
Period6/19/166/22/16

Fingerprint

Dive into the research topics of 'Two-dimensional materials for electronic, photonic, spintronic and sensing applications'. Together they form a unique fingerprint.

Cite this