Unstructured tree search on SIMD parallel computers: A summary of results

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

In this paper, we present new methods for load balancing of unstructured tree computations on large-scale SIMD machines, and analyze the scalability of these and other existing schemes. An efficient formulation of tree search on a SIMD machine comprises of two major components: (i) a triggering mechanism, which determines when the search space redistribution must occur to balance search space over processors; and (ii) a scheme to redistribute the search space. We have devised a new redistribution mechanism and a new triggering mechanism. Either of these can be used in conjunction with triggering and redistribution mechanisms developed by other researchers. We analyze the scalability of these mechanisms, and verify the results experimentally. The analysis and experiments show that our new load balancing methods are highly scalable on SIMD architectures. Their scalability is shown to be no worse than that of the best load balancing schemes on MIMD architectures. We verify our theoretical results by implementing the 15-puzzle problem on a CM-21 SIMD parallel computer.

Original languageEnglish (US)
Title of host publicationProceedings of the 1992 ACM/IEEE conference on Supercomputing, Supercomputing 1992
EditorsRobert Werner
PublisherAssociation for Computing Machinery
Pages453-462
Number of pages10
ISBN (Electronic)0818626305
DOIs
StatePublished - Dec 1 1992
Event1992 ACM/IEEE conference on Supercomputing, Supercomputing 1992 - Minneapolis, United States
Duration: Nov 16 1992Nov 20 1992

Publication series

NameProceedings of the International Conference on Supercomputing
VolumePart F129723

Other

Other1992 ACM/IEEE conference on Supercomputing, Supercomputing 1992
CountryUnited States
CityMinneapolis
Period11/16/9211/20/92

Fingerprint Dive into the research topics of 'Unstructured tree search on SIMD parallel computers: A summary of results'. Together they form a unique fingerprint.

Cite this