Using two-dimensional correlations of13C NMR and FTIR to investigate changes in the chemical composition of dissolved organic matter along an estuarine transect

Hussain A.N. Abdulla, Elizabeth C Austin-Minor, Patrick G. Hatcher

Research output: Contribution to journalArticlepeer-review

85 Scopus citations

Abstract

Applying two-dimensional correlation spectroscopy to13C NMR and FTIR spectra of the high molecular-weight dissolved organic matter (HMW-DOM) isolated along an Elizabeth River/Chesapeake Bay salinity transect shows that HMW-DOM consists of three major components that have different biogeochemical reactivities. The first appears to be a heteropolysaccharide (HPS) component and its contribution to carbon increases as we approach the marine offshore. The second appears to be composed of carboxyl-rich compounds (CRC); its carbon percentage decreases. The third component contains the major functional group of amide/amino sugar (AMS) and its carbon percentage stays almost constant along the salinity transect. It seems that the HPS and CRC are present in many aquatic environments at different relative ratios. The 2D-correlation maps reveal that each of these components is composed of dynamic mixtures of compounds that share similar backbone structures but have significant functional group differences. Twodimensional (2D) correlation spectroscopy is a powerful new biogeochemical tool to track the changes in complex organic matter as a function of space, time, or environmental effects.

Original languageEnglish (US)
Pages (from-to)8044-8049
Number of pages6
JournalEnvironmental Science and Technology
Volume44
Issue number21
DOIs
StatePublished - Sep 24 2010

Fingerprint Dive into the research topics of 'Using two-dimensional correlations of<sup>13</sup>C NMR and FTIR to investigate changes in the chemical composition of dissolved organic matter along an estuarine transect'. Together they form a unique fingerprint.

Cite this