Validation of finite element models for strain analysis of implant-supported prostheses using digital image correlation

Rodrigo Tiossi, Marco A.A. Vasco, Lianshan Lin, Heather J. Conrad, Osvaldo L. Bezzon, Ricardo F. Ribeiro, Alex S.L. Fok

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Objectives A validated numerical model for stress/strain predictions is essential in understanding the biomechanical behavior of implant-supported dental prostheses. The digital image correlation (DIC) method for full-field strain measurement was compared with finite element analysis (FEA) in assessing bone strain induced by implants. Methods An epoxy resin model simulating the lower arch was made for the experimental test with acrylic resin replicas of the first premolar and second molar and threaded implants replacing the second premolar and first molar. Splinted (G1/G3) and non-splinted (G2/G4) metal-ceramic screw-retained crowns were fabricated and loaded with (G1/G2) or without (G3/G4) the second molar that provided proximal contact. A single-camera, two-dimensional DIC system was used to record deformation of the resin model surface under a load of 250 N. Three-dimensional finite element (FE) models were constructed for the physical models using computer-aided design (CAD) software. Surface strains were used for comparison between the two methods, while internal strains at the implant/resin block interface were calculated using FEA. Results Both methods found similar strain distributions over the simulant bone block surface, which indicated possible benefits of having splinted crowns and proximal contact in reducing bone strains. Internal strains predicted by FEA at the implant-resin interface were 8 times higher than those on the surface of the model, and they confirmed the results deduced from the surface strains. FEA gave higher strain values than experiments, probably due to incorrect material properties being used. Significance DIC is a useful tool for validating FE models used for the biomechanical analysis of dental prosthesis.

Original languageEnglish (US)
Pages (from-to)788-796
Number of pages9
JournalDental Materials
Volume29
Issue number7
DOIs
StatePublished - Jul 2013

Bibliographical note

Funding Information:
This investigation was supported by Research Grant Number 2010/19221-9 from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and by Research Grant Number 2450/09-7 from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) .

Keywords

  • Dental implants
  • Dental prosthesis
  • Digital image correlation
  • Finite element analysis
  • Strain analysis

Fingerprint

Dive into the research topics of 'Validation of finite element models for strain analysis of implant-supported prostheses using digital image correlation'. Together they form a unique fingerprint.

Cite this