Vibrational modes of circular free plates under tension

L. M. Chasman

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The vibrational frequencies of a plate under tension are given by the eigenvalues ω of the equation Δ 2u - τΔu = ωu. This article determines the eigenfunctions and eigenvalues of this bi-Laplace problem on the ball under natural (free) boundary conditions. In particular, the fundamental modes - the eigenfunctions of the lowest nonzero eigenvalue - are identified and found to have simple angular dependence.

Original languageEnglish (US)
Pages (from-to)1877-1895
Number of pages19
JournalApplicable Analysis
Volume90
Issue number12
DOIs
StatePublished - Dec 2011
Externally publishedYes

Bibliographical note

Funding Information:
I am grateful to the University of Illinois Department of Mathematics and the Research Board for support during my graduate studies, and the National Science Foundation for graduate student support under grants DMS-0140481 (Laugesen) and DMS-0803120 (Hundertmark) and DMS 99-83160 (VIGRE), and the University of Illinois Department of Mathematics for travel support to attend the 2007 Sectional meeting of the AMS in New York. I would also like to thank the Mathematisches Forschungsinstitut Oberwolfach for travel support to attend the workshop on Low Eigenvalues of Laplace and Schrödinger Operators in 2009.

Keywords

  • Bessel functions
  • bi-Laplace
  • free plate

Fingerprint

Dive into the research topics of 'Vibrational modes of circular free plates under tension'. Together they form a unique fingerprint.

Cite this