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Abstract

In this paper we discuss the stability properties of convolutional neu-
ral networks. Convolutional neural networks are widely used in machine
learning. In classification they are mainly used as feature extractors. Ide-
ally, we expect similar features when the inputs are from the same class.
That is, we hope to see a small change in the feature vector with respect
to a deformation on the input signal. This can be established mathe-
matically, and the key step is to derive the Lipschitz properties. Further,
we establish that the stability results can be extended for more general
networks. We give a formula for computing the Lipschitz bound, and
compare it with other methods to show it is closer to the optimal value.

1 Introduction

Recently convolutional neural networks have enjoyed tremendous success in
many applications in image and signal processing. According to [5], a gen-
eral convolutional network contains three types of layers: convolution layers,
detection layers, and pooling layers. In [7], Mallat proposes the scattering net-
work, which is a tree-structured convolutional neural network whose filters in
convolution layers are wavelets. Mallat proves that the scattering network sat-
isfies two important properties: (approximately) invariance to translation and
stabitity to deformation. However, for those properties to hold, the wavelets
must satisfy an admissibility condition. This restricts the adaptability of the
theory. The authors in [11, 12] use a slightly different setting to relax the condi-
tions. They consider sets of filters that form semi-discrete frames of upper frame
bound equal to one. They prove that deformation stability holds for signals that
satisfy certain conditions.
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In both settings, the deformation stability is a consequence of the Lipschitz
property of the network, or feature extractor. The Lipschitz property in itself
is important even if we do not consider deformation of the form described in
[7]. In [10], the authors detect some instability of the AlexNet by generating
images that are easily recognizable by nude eyes but cause the network to give
incorrect classification results. They partially attribute the instability to the
large Lipschitz bound of the AlexNet. It is thus desired to have a formula to
compute the Lipschitz bound in case the upper frame bound is not one.

The lower bound in the frame condition is not used when we analyze the
stability properties for scattering networks. In [12] the authors conjectured
that it has to do with the distinguishability of the two classes for classification.
However, certain loss of information should be allowed for classification tasks.
A lower frame bound is too strong in this case since it has most to do with
injectivity. In this paper, we only consider the semi-discrete Bessel sequence,
and discuss a convolutional network of finite depth.

Merging is widely used in convolutional networks. Note that practitioners
use a concatenation layer ([9]) but that is just a concatenation of vectors and is
of no mathematical interest. Nevertheless, aggregation by p-norms and multipli-
cation is frequently used in networks and we still obtain stability to deformation
in those cases and the Lipschitz bound increases only by a factor depending on
the number of filters to be aggregated.

The organization of this paper is as follows. In Section 2, we introduce
the scattering network and state a general Lipschitz property. In Section 3,
we discuss the aggregation of filters using p-norms or pointwise multiplication.
In Section 4, we use examples of networks to compare different methods for
computing the Lipschitz constants.

2 Scattering Network

We first review the theory developed by the authors in [7, 11, 12] and give a more
general result. Figure 1 shows a typical scattering network. f denotes an input
signal (commonly in L2 or l2, for our discussion we take f ∈ L2(Rd)). gm,l’s and
φm’s are filters and the corresponding blocks symbolizes the operation of doing
convolution with the filter in the block. The blocks marked σm,l illustrate the
action of a nonlinear function. This structure clearly shows the three stages of
a convolutional neural network: the gm,l’s are the convolution stage; the σm,l’s
are the detection stage; the φm’s are the pooling stage.

The output of the network in Figure 1 is the collection of outputs of each
layer. To represent the result clearly, we introduce some notations first.

We call an ordered collection of filters gm,l ∈ L1(Rd) connected in the net-
work starting from m = 1 a path, say q = (g1,l1 , g2,l2 , · · · , gMq,lMq

) (for brevity
we also denote it as q = ((1, l1), (2, l2), · · · , (Mq, lMq

)), and in this case we de-
note |q| = Mq to be the number of filters in the collection. We call |q| the length
of the path. For q = ∅, we say that |q| = 0. The largest possible |q|, say M ,
is called the depth of the network. For each m = 1, 2, · · · ,M + 1, there is an
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Figure 1: Structure of the scattering network of depth M

output-generating atom φm ∈ L1(Rd), which is usually taken to be a low-pass
filter. φ1 generates an output from the original signal f , and φm generates an
output from a filter gm−1,lm in the (m − 1)’s layer, for 2 ≤ m ≤ M + 1. It is
clear that a scattering network of finite depth is uniquely determined by φm’s
and the collection Q of all paths. We use Gm to denote the set of filters in the
m-th layer. For a fixed q with |q| = m, we use Gqm+1 to denote the set of filters
in the (m+ 1)’s layer that are connected with q. Thus Gm+1 is a disjoint union
of Gqm+1’s:

Gm+1 =
⋃̇
Gqm+1 .

σm,l : C → C are Lipschitz continuous functions with Lipschitz bound no
greater than 1. That is,

‖σm,l(y)− σm,l(ỹ)‖2 ≤ ‖y − ỹ‖2
for any y, ỹ ∈ L2(Rd). The Lip-1 condition is not restrictive since any other
Lipschitz constant can be absorbed by the proceeding gm,l filters.

The scattering propagator U [q] : L2(Rd)→ L2(Rd) for a path q = (g1,l1 , g2,l2 ,
· · · , gMq,lMq

) is defined to be

U [q]f := σMq,lMq

(
σ2,l2

(
σ1,l1(f ∗ g1,l1) ∗ g2,l2

)
∗ · · · ∗ gMq,lMq

)
. (2.1)

If q = ∅, then by convention we say U [∅]f := f .
Given an input f ∈ L2(Rd), the output of the network is the collections

Φ(f) := {U [q]f ∗ φMq+1}q∈Q. The norm ||| · ||| is defined by

|||Φ(f)||| :=

∑
q∈Q

∥∥U [q]f ∗ φMq+1

∥∥2
2

 1
2

. (2.2)

3



Given a collection of filters {gi}i∈I where the index set I is at most countable
and for each i, gi ∈ L1(Rd) ∩ L2(Rd), {gi}i∈I is said to form the atoms of a
semi-discrete Bessel sequence if there exists a constant B > 0 for which∑

i∈I
‖f ∗ gi‖22 ≤ B ‖f‖

2
2

for any f ∈ L2. In this case, {gi}i∈I is said to form the atoms of a semi-discrete
frame if in addition there exists a constant A > 0 for which

A ‖f‖22 ≤
∑
i∈I
‖f ∗ gi‖22 ≤ B ‖f‖

2
2

for any f ∈ L2.
Conditions (2.1) and (2.5) can be achieved for a larger class of filters. Specif-

ically, we shall introduce a Banach algebra in (3.1), where the Bessel bound is
naturally defined.

Throughout this paper, we adapt the definition of Fourier transform of a
function f to be

f̂(ω) =

∫
Rd
f(x)e−2πiωxdx . (2.3)

The dilation of f by a factor λ is defined by

fλ(x) = λf(λx) . (2.4)

The first result of this paper compiles and extends previous results obtained
in [7, 11, 12].

Theorem 2.1 (See also [7, 11, 12]). Suppose we have a scattering network of
depth M . For each m = 1, 2, · · · ,M + 1,

Bm = max
q:|q|=m−1

∥∥∥∥∥∥
( ∑
gm,l∈Gqm

|ĝm,l|2
)

+
∣∣∣φ̂m∣∣∣2

∥∥∥∥∥∥
∞

<∞ (2.5)

with the understanding that BM+1 =
∥∥∥φ̂M+1

∥∥∥2
∞

(that is, GqM+1 = ∅). Then

the corresponding feature extractor Φ is Lipschitz continuous in the following
manner:

|||Φ(f)− Φ(h)||| ≤

(
M+1∏
m=1

B̃m

) 1
2

‖f − h‖2 ,

where
B̃1 = B1, B̃m = max{1, Bm} for m ≥ 2 . (2.6)

Proof. First we prove a lemma.
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Lemma 2.2. With the settings in Theorem 2.1, for 0 ≤ m ≤M − 1, we have∑
|q|=m+1

‖U [q]f − U [q]h‖22 +
∑
|q|=m

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

≤
∑
|q|=m

Bm+1 ‖U [q]f − U [q]h‖22 ;
(2.7)

for m = M , we have∑
|q|=M

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22 ≤
∑
|q|=M

BM+1 ‖U [q]f − U [q]h‖22 .

(2.8)

Proof of Lemma 2.2. Let q be a path with |q| = m < M . We go one layer
deeper to get∑

q′∈q×Gqm+1

‖U [q′]f − U [q′]h‖22 + ‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

=
∑

gm+1,l∈Gqm+1

‖σm+1,l(U [q]f ∗ gm+1,l)− σm+1,l(U [q]h ∗ gm+1,l)‖22 +

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22
≤

∑
gm+1,l∈Gqm+1

‖U [q]f ∗ gm+1,l − U [q]h ∗ gm+1,l‖22 + ‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

=
∑

gm+1,l∈Gqm+1

‖(U [q]f − U [q]h) ∗ gm+1,l‖22 + ‖(U [q]f − U [q]h) ∗ φm+1‖22 .

(2.9)
Sum over all q with length m, we have∑

|q|=m+1

‖U [q]f − U [q]h‖22 +
∑
|q|=m

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

≤
∑
|q|=m

∑
gm+1,l∈Gm+1

‖(U [q]f − U [q]h) ∗ gm+1,l‖22 +

∑
|q|=m

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

≤
∑
|q|=m

Bm+1 ‖U [q]f − U [q]h‖22 ,

(2.10)

which follows the Bessel inequality by the definition of the Bm’s. For m = M,
directly following the Young’s inequality we have (2.8).

We now continue with the proof of Theorem 2.1. The inqualities (2.7) and
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(2.8) have two consequences. First, summing over m = 0, · · · ,M we have

M∑
m=0

∑
|q|=m

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

≤ B1 ‖f − h‖22 +

M∑
m=1

(Bm+1 − 1)
∑
|q|=m

‖U [q]f − U [q]h‖22 ;

(2.11)

second, we have for each m = 0, · · · ,M − 1 that∑
|q|=m+1

‖U [q]f − U [q]h‖22 ≤
∑
|q|=m

Bm+1 ‖U [q]f − U [q]h‖22 . (2.12)

Therefore, put (2.11) and (2.12) together, noting that Bm ≤ B̃m for each m, we
have

M∑
m=0

∑
|q|=m

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

≤ B̃1 ‖f − h‖22 +

M∑
m=1

(B̃m+1 − 1)

(
m∏

m′=1

B̃m′

)
‖f − h‖22

≤

(
M+1∏
m=1

B̃m

)
‖f − h‖22 .

(2.13)

We complete the proof by observing that the uppermost object in Inequality
(2.13) is nothing but |||Φ(f)− Φ(h)|||2.

Remark 2.3. [11, 12] consider the case where each filter in the m-th layer in
connected to all the frame vectors from the pre-designed frame for the (m+ 1)-
th layer. In practical uses then, a dimension reduction process needs to be done
to select a few branches from the numerous tributaries due to such a design
manner (see [1]). Also, the authors of [11, 12] assume that all the Bm’s are less
than or equal to one. As can be seen in the above proof, this assumption is not
needed.

Remark 2.4. The infinite-depth case is an immediate extension of the finite-
depth case if

∏
B̃m <∞.

Theorem 2.1, together with Schur’s test (for integral operators), lead to the
following theorem, which implies the deformation stability of the corresponding
network. The proof can be found in [11]. We state this result for the complete-
ness of this article.

Theorem 2.5 ([11]). With the settings in Theorem 2.1, Let HR be the space of
R-band-limited functions defined by

HR := {f ∈ L2(Rd) : supp(f̂) ⊂ BR(0)} .
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Then for all f ∈ HR, ω ∈ C(Rd, R), τ ∈ C1(Rd, R) with ‖Dτ‖∞ ≤ (2d)−1,

|||Φ(f)− Φ(Fτ,ωf)||| ≤ C(R ‖τ‖∞ + ‖ω‖∞) ‖f‖2 ,

where Fτ,ωf) is the deformed version of f defined by

Fτ,ωf(x) := e2πiω(x)f(x− τ(x)) . (2.14)

Note that the Lipschitz property of σm,l’s is not necessary in some cases. For

instance, if we use |·|2 in place of all the σm,l’s, as illustrated in Figure 2. Then
the training process would deal with smooth functions that are not Lipschitz.
To guarantee a finite Lipschitz constant for Φ we need to control the L∞ norm
of the input.

Figure 2: Structure of the scattering network of depth M with nonlinearity |·|2

Theorem 2.6. Consider the settings in Theorem 2.1, where σm,l’s are replaced

with |·|2 (see Figure 2). Suppose there is a constant R > 0 for which ‖gm,l‖1 ≤
min{1,2

√
R}

2R for all m, l. Then the corresponding feature extractor Φ is Lipschitz
continuous on the ball of radius R under infinity norm in the following manner:

|||Φ(f)− Φ(h)||| ≤

(
M+1∏
m=1

B̃m

) 1
2

‖f − h‖2 .

for any f , h ∈ L2(Rd) with ‖f‖∞ ≤ R, ‖h‖∞ ≤ R, where B̃m’s are defined as
in (2.6) and (2.5).

Remark 2.7. In the case of deformation, h is given by h = Fτ,ω as defined in
(2.14). If f satisfies the L∞ condition ‖f‖∞ = R, so does h, since ‖h‖∞ = ‖f‖∞.
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Proof. Notice that min{1,2
√
R}

2R = min{ 1√
R
, 1
2R}. Hence ‖gm,l‖1 ≤ 1/

√
R and

‖gm,l‖1 ≤ 1/2R. We observe that for any path q with length |q| = m ≥ 1, say
q =

(
(1, l1), (2, l2), · · · , (Mq, lMq

)
)
, and for convenience denote q1 = ((1, l1)),

q2 = ((1, l1), (2, l2)), · · · , qMq−1 =
(
(1, l1), (2, l2), · · · , (Mq − 1, lMq−1)

)
, we have

‖U [q]f‖∞ =

∥∥∥∥∣∣∣U [qMq−1]f ∗ gMq,lMq

∣∣∣2∥∥∥∥
∞

≤
∥∥U [qMq−1]f

∥∥2
∞

∥∥∥gMq,lMq

∥∥∥2
1

≤
∥∥U [qMq−2]f

∥∥4
∞

∥∥∥gMq−1,lMq−1

∥∥∥4
1

∥∥∥gMq,lMq

∥∥∥2
1

≤ · · ·

≤ ‖U [q1]f‖2
Mq−1

∞

Mq∏
j=2

∥∥gj,lj∥∥2Mq−j+1

1

≤ ‖f‖2
Mq

∞

Mq∏
j=1

∥∥gj,lj∥∥2Mq−j+1

1

≤ R2Mq
Mq∏
j=1

(
1√
R

)2Mq−j+1

= R2Mq ·
(

1√
R

)(2Mq−1)

= R .

With this, let q be a path of length |q| = m < M , we have for each l that∥∥∥|U [q]f ∗ gm+1,l|2 − |U [q]h ∗ gm+1,l|2
∥∥∥2
2

= ‖(|U [q]f ∗ gm+1,l|+ |U [q]h ∗ gm+1,l|) (|U [q]f ∗ gm+1,l| − |U [q]h ∗ gm+1,l|)‖22
≤ ‖|U [q]f ∗ gm+1,l|+ |U [q]h ∗ gm+1,l|‖21 ‖|U [q]f ∗ gm+1,l| − |U [q]h ∗ gm+1,l|‖22
≤ (‖U [q]f‖∞ + ‖U [q]h‖∞)

2 ‖gm+1,l‖21 ‖|U [q]f ∗ gm+1,l| − |U [q]h ∗ gm+1,l|‖22
≤ (R+R)2(1/2R)2 ‖|U [q]f ∗ gm+1,l| − |U [q]h ∗ gm+1,l|‖22
= ‖|U [q]f ∗ gm+1,l| − |U [q]h ∗ gm+1,l|‖22
≤ ‖U [q]f ∗ gm+1,l − U [q]h ∗ gm+1,l‖22 .
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Therefore,∑
q′∈q×Gqm+1

‖U [q′]f − U [q′]h‖22 + ‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

≤
∑

gm+1,l∈Gqm+1

‖U [q]f ∗ gm+1,l − U [q]h ∗ gm+1,l‖22 + ‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

=
∑

gm+1,l∈Gqm+1

‖(U [q]f − U [q]h) ∗ gm+1,l‖22 + ‖(U [q]f − U [q]h) ∗ φm+1‖22 .

Then by exactly the same inequality as (2.10), for 0 ≤ m ≤M − 1,∑
|q|=m+1

‖U [q]f − U [q]h‖22 +
∑
|q|=m

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22

≤
∑
|q|=m

Bm+1 ‖U [q]f − U [q]h‖22 ;

and for m = M ,∑
|q|=M

‖U [q]f ∗ φm+1 − U [q]h ∗ φm+1‖22 ≤
∑
|q|=M

BM+1 ‖U [q]f − U [q]h‖22 .

The rest of the proof is a minimal modification to that of Theorem 2.1. It
is obvious that ‖f‖∞ = ‖Fτ,ω‖∞.

In most applications, the L∞-norm of the input is well bounded. For in-
stance, normalized grayscale images have pixel valued between 0 and 1. Even if
it is not the case, we can pre-filter the input by widely used sigmoid functions,
such as tanh. For instance, in the above case of |·|2, we can use the structure as
follows.

Figure 3: Restrict ‖f‖∞ at the first layer using R · tanh

3 Filter Aggregation

3.1 Aggregation by taking norm across filters

We use filter aggregation to model the pooling stage after convolution. In deep
learning there are two widely used pooling operation, max pooling and average
pooling. Max pooling is the operation of extracting local maximum of the signal,
and can be modeled by an L∞-norm aggregation of copies of shifted and dilated
signals. Average pooling is the operation of taking local average of the signal,
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and can be modeled by a L1-norm aggregation of copies of shifted and dilated
signals. When those pooling operations exist, it is still desired that the feature
extractor is stable. We analyze this type of aggregation in detail as follows.

We consider filter aggregation by taking pointwise p-norms of the inputs.
That is, suppose the inputs of the aggregation are y1, y2, · · · , yL from L different
filters, the output is given by (

∑L
l=1 |yl|

p
)1/p for some p with 1 ≤ p ≤ ∞. Note

that y1, y2, · · · , yL are all L2 functions and thus the output is also a L2 function.
A typical structure is illustrated in Figure 4. Recall all the nonlinearities σm,l’s
are assumed to be pointwise Lipschitz functions, with Lipschitz bound less than
or equal to one.

Figure 4: A typical structure of the scattering network with pointwise p-norms

Note that we do not necessarily aggregate filters in the same layer. For
instance, in Figure 4, f ∗ g1,1, f ∗ g1,2 are aggregated with f . Nevertheless,
for the purpose of analysis it suffices to consider the case where the filters to
be aggregated are in the same layer of the network. To see this, note that the
equivalence relation in Figure 5. We can coin a block which does not change
the input (think of a δ-function if we want to make the block “convolutional”).
Since a δ-function is not in L1(Rd), if we want to apply the theory we have
to consider a larger space where the filters stay. In this case, it is natural to
consider the Banach algebra

B =
{
f ∈ S ′(Rd),

∥∥∥f̂∥∥∥
∞
<∞

}
. (3.1)

Without loss of generality, we can consider only networks in which the ag-
gregation only takes inputs from the same layer.

Our purpose is to derive inequalities similar to (2.7) and (2.8). We define
a path q to be a sequence of filters in the same manner as in Section 2. Note

10



Figure 5: Equivalence for aggregating from different layers

that by aggregating the filters we no longer have a scattering structure but a
general convolutional network. That is, we might have two different filters in
the m-th layer that flows into the same filter in the (m+1)-th layer. Although a
scattering network with aggregation by the p-norm is still uniquely determined
by the collection Q of its paths, the notation U [q] is meaningless since it does
not take into account the aggregation. The output in this case may not depend
on a single path.

Note that for each m = 1, · · · ,M , the m-th layer of filters is followed by
blocks of ‖·‖p’s and nonlinearity σm,l’s. Let µm be the total number of the
blocks in the m-th layer. Also take µ0 = 1. Further, we denote the blocks to
be Km,1, · · · ,Km,µm . For a block K and a filter g, we denote g ↔ K if they
are connected in the network. For a block Km,λ, 1 ≤ m ≤ M , 1 ≤ λ ≤ µm, we

denote Gin
m,λ to be the collection of filters in the m-th layer that are connected

to Km,λ (“in” implies the filters “flow into” the block), and denote Gout
m+1,λ to

be the collection of filters in the (m+ 1)-th layer connected to Km,λ. Then for

each m = 1, · · · ,M , Gm =
⋃̇

1≤λ≤µm G
in
m,λ; also, for each m = 1, · · · ,M − 1,

Gm =
⋃̇

1≤λ′≤µm+1
Gout
m,λ′ .

We define the scattering propagator {U1
m, · · · , Uµmm }Mm=0 recursively as fol-

lows. Define U1
0 f := f . Suppose {U1

m, · · · , Uµmm } has been defined for some
m < M , then for each λ = 1, · · · , µm+1, we define

Uλm+1f :=

 ∑
gm+1,lm+1

↔Km+1,λ

∣∣∣Uλ′m f ∗ gm+1,lm+1

∣∣∣p
 1

p

, (3.2)

where λ′ satisfies gm+1,lm+1
↔ Km,λ′ , which is unique by the structure of the

network. Now the output Φ(f) := {Uλm ∗ φm+1}0≤m≤M,1≤λ≤m is naturally
defined.

To proceed we first prove the following lemma.

Lemma 3.1. Let {gm,l}Ll=1 be the filters to be aggregated using p-norm with
1 ≤ p ≤ ∞, then we have the following: suppose {fm−1,l}Ll=1 and {hm−1,l}Ll=1

11



are two sets of inputs to those filters and fm and hm are the outputs respectively,
then

‖fm − hm‖22 ≤ max(1, L2/p−1)

L∑
l=1

‖(fm−1,l − hm−1,l) ∗ gm,l‖22 . (3.3)

Proof. For 1 ≤ p ≤ ∞, applying
∣∣∣‖v1‖p − ‖v2‖p∣∣∣ ≤ ‖v1 − v2‖p and ‖v1‖p ≤

max(1, L1/p−1/2) ‖v1‖2 for any vectors v1, v2 of length L, we have

‖fm − hm‖22 =

∥∥∥∥∥∥
(

L∑
l=1

|fm−1,l ∗ gm,l|p
)1/p

−

(
L∑
l=1

|hm−1,l ∗ gm,l|p
)1/p

∥∥∥∥∥∥
2

2

≤

∥∥∥∥∥∥
(

L∑
l=1

|(fm−1,l − hm−1,l) ∗ gm,l|p
)1/p

∥∥∥∥∥∥
2

2

≤

∥∥∥∥∥∥max(1, L1/p−1/2)

(
L∑
l=1

|(fm−1,l − hm−1,l) ∗ gm,l|2
)1/2

∥∥∥∥∥∥
2

2

= max(1, L2/p−1)

∫ L∑
l=1

|(fm−1,l − hm−1,l) ∗ gm,l|2

= max(1, L2/p−1)

L∑
l=1

‖(fm−1,l − hm−1,l) ∗ gm,l‖22 .

With Lemma 3.1 we can compute for any m = 0, · · · ,M that

µm+1∑
λ=1

∥∥Uλm+1f − Uλm+1h
∥∥2
2

≤
µm∑
λ′=1

∑
l:gm+1,l∈Gout

m,λ′

max

(
1,
∣∣∣Gin

m+1,λ

∣∣∣2/p−1)∥∥∥Uλ′m f ∗ gm+1,l − Uλ
′

m h ∗ gm+1,l

∥∥∥2
2
,

where for each m, l, Gin
m+1,λ is the unique class of filters that contains gm+1,l.

We can then proceed similar to Inequality (2.9) with minor changes. We get
the following result on the Lipschitz properties for Φ.

Theorem 3.2. Suppose we have a scattering network of depth M including only
p-norm aggregations. For m = 1, 2, · · · ,M + 1, set

Bm = max
1≤λ′≤µm−1

∥∥∥∥∥∥∥
∑

l:gm,l∈Gout
m,λ′

max

(
1,
∣∣∣Gin

m+1,λ

∣∣∣2/p−1) |ĝm,l|2 +
∣∣∣φ̂m∣∣∣2

∥∥∥∥∥∥∥
∞

<∞

12



(with the understanding that BM+1 =
∥∥∥φ̂M+1

∥∥∥2
∞

, that is, Gout
M+1,λ′ = ∅ for any

1 ≤ λ′ ≤ µM ), where for each m, l, Gin
m,λ is the unique class of filters that

contains gm,l and Gin
m,λ denotes its cardinal. Then the corresponding feature

extractor Φ is Lipschitz continuous in the following manner:

|||Φ(f)− Φ(h)||| ≤

(
M+1∏
m=1

B̃m

) 1
2

‖f − h‖2 , ∀f, h ∈ L2(Rd) ,

where B̃m’s are defined as in (2.6) and (2.5).

3.2 Aggregation by pointwise multiplication

In convolutional networks that includes time sequences, it is often useful to
take the pointwise product of two intermediate outputs. For instance, in the
Long Short-Term Memory (LSTM) networks introduced in [3, 8], multiplication
is used when we have two branches and want to use one branch for informa-
tion extraction and the other for controlling, or so called “gating”. A typical
structure is illustrated in Figure 6. The multiplication brings two outputs into
one.

Figure 6: A typical structure of a scattering network with multiplication

Similar to the previous section, we consider multiplication blocks (if a filter is
not followed by a multiplication block, such as g1,3 in Figure 6, we still consider

a block after |·|), Jm,λ, 1 ≤ m ≤M , 1 ≤ λ ≤ µm. We define Gin
m,λ and Gout

m+1,λ

to be the filters in the m-th and the (m+1)-th layer that are connected to Jm,λ,

13



respectively. Note that
∣∣∣Gin

m,λ

∣∣∣ ∈ {1, 2}. The scattering propagator Uλm’s and

output generating operator Φ are defined similarly. The Lipschitz property is
given by the following Theorem.

Theorem 3.3. Suppose we have a scattering network of depth M involving only
pointwise multiplication blocks. For m = 1, 2, · · · ,M + 1,

Bm = max
1≤λ≤µm

∥∥∥∥∥∥
∑

gm,l∈Gout
m,λ

∣∣∣Gin
m,λ

∣∣∣ |ĝm,l|2 +
∣∣∣φ̂m∣∣∣2

∥∥∥∥∥∥
∞

<∞

(with the understanding that BM+1 =
∥∥∥φ̂M+1

∥∥∥2
∞

, that is, Gout
M+1,λ = ∅ for all

1 ≤ λ ≤ M), where for each m, l, Gin
m,λ is the unique class of filters that

contains gm,l. Suppose ‖gm,l‖1 ≤ 1 for all m, l. Then the corresponding feature
extractor Φ is Lipschitz continuous on the ball of radius 1 under infinity norm
in the following manner:

|||Φ(f)− Φ(h)||| ≤

(
M+1∏
m=1

B̃m

) 1
2

‖f − h‖2 ,

for any f , h ∈ L2(Rd) with ‖f‖∞ ≤ 1, ‖h‖∞ ≤ 1, where B̃m’s are defined as in
(2.6) and (2.5).

This follows by minimal modification in the proof of Theorem 2.1 once we
prove the following two lemmas. Lemma 3.4 implies that the infinite norm of the
inputs to each layer have the same bound. Lemma 3.5 gives a similar inequality
to (2.9).

Lemma 3.4. (1) Let gm,1 and gm,2 be the two filters to be aggregated using
multiplication with ‖gm,j‖1 ≤ 1 for j = 1, 2. We have the following: suppose
fm−1,1 and fm−1,2 are the inputs to the filters respectively with ‖fm−1,j‖∞ ≤ 1
for j = 1, 2, then the output fm satisfies ‖fm‖∞ ≤ 1;
(2) Let gm be a filter not to be aggregated with ‖gm‖1 ≤ 1, then suppose fm−1
is the input to the filter with ‖fm−1‖∞ ≤ 1, we have the output fm satisfies
‖fm‖∞ ≤ 1.

Proof. (2) directly follows from Young’s Inequality. For (1), we have

‖fm‖∞ = ‖σm,1(fm−1,1 ∗ gm,1) · σm,2(fm−1,2 ∗ gm,2)‖∞
≤ ‖fm−1,1 ∗ gm,1‖∞ ‖fm−1,2 ∗ gm,2‖∞
≤ ‖fm−1,1‖∞ ‖fm−1,2‖∞ ‖gm,1‖1 ‖gm,2‖1
≤ 1 .
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Lemma 3.5. Let gm,1, gm,2 be the two filters to be aggregated using a multi-
plication block with ‖gm,j‖1 ≤ 1 for j = 1, 2. We have the following: suppose
{fm−1,j}2j=1 and {hm−1,j}2j=1 are two sets of inputs to those filters with infinite
norm bounded by 1, and fm and hm are the outputs respectively, then

‖fm − hm‖22 ≤ 2 ‖(fm−1,1 − hm−1,1) ∗ gm,1‖22 + 2 ‖(fm−1,2 − hm−1,2) ∗ gm,2‖22 .

Proof.

‖fm − hm‖22
= ‖σm,1(fm−1,1 ∗ gm,1)σm,2(fm−1,2 ∗ gm,2)−

σm,1(hm−1,1 ∗ gm,1)σm,2(hm−1,2 ∗ gm,2)‖22
= ‖σm,1(fm−1,1 ∗ gm,1)σm,2(fm−1,2 ∗ gm,2)−

σm,1(fm−1,1 ∗ gm,1)σm,2(hm−1,2 ∗ gm,2)+

σm,1(fm−1,1 ∗ gm,1)σm,2(hm−1,2 ∗ gm,2)−
σm,1(hm−1,1 ∗ gm,1)σm,2(hm−1,2 ∗ gm,2)‖22

≤ 2‖σm,1(fm−1,1 ∗ gm,1)σm,2(fm−1,2 ∗ gm,2)−
σm,1(fm−1,1 ∗ gm,1)σm,2(hm−1,2 ∗ gm,2)‖22+

2‖σm,1(fm−1,1 ∗ gm,1)σm,2(hm−1,2 ∗ gm,2)−
σm,1(hm−1,1 ∗ gm,1)σm,2(hm−1,2 ∗ gm,2)‖22

≤ 2‖σm,1(fm−1,1 ∗ gm,1)‖2∞‖σm,2(fm−1,2 ∗ gm,2)−
σm,2(hm−1,2 ∗ gm,2)‖22+

2 ‖σm,2(hm−1,2 ∗ gm,2)‖2∞ ‖σm,1(fm−1,1 ∗ gm,1)−
σm,1(hm−1,1 ∗ gm,1)‖22

≤ 2 ‖fm−1,1‖2∞ ‖gm,1‖
2
1 ‖(fm−1,2 − hm−1,2) ∗ gm,2‖22 +

2 ‖hm−1,2‖2∞ ‖gm,2‖
2
1 ‖(fm−1,1 − hm−1,1) ∗ gm,1‖22

≤ 2 ‖(fm−1,1 − hm−1,1) ∗ gm,1‖22 +

2 ‖(fm−1,2 − hm−1,2) ∗ gm,2‖22 .

For a general f ∈ L2(Rd), as discussed in the end of Section 2, we can first let
it go through a sigmoid-like function, then go through the scattering network.

3.3 Mixed aggregations

The two types of aggregation blocks can be mixed together in the same net-
works (which is the common case in applications). The precise statement of
the Lipschitz property becomes a little cumbersome to state in full generality.
However, L2-norm estimates can be combined using Theorem 2.1, 2.6, 3.2 and
3.3. This is illustrated in the next section.
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4 Examples of estimating the Lipschitz constant

We use three different approaches to estimate the Lipschitz constant. The first
is by propagating backward from the outputs, regardless of what we have done
above. The second is by directly applying what we have discussed above. The
third is by deriving a lower bound, either because of the specifies of the network
(the first example), or by numerical simulating (the second example).

4.1 A standard Scattering Network

We first give an example of a standard scattering networks of three layers. The
structure is as Figure 2.1 in [7]. We consider the 1D case and the wavelet given
by the Haar wavelets

φ(t) =

{
1, if 0 ≤ t < 1

0, otherwise
and ψ(t) =


1, if 0 ≤ t < 1/2

−1, if 1/2 ≤ t < 1

0, otherwise

.

In this section, the sinc function is defined as sinc(x) = sin(πx)/(πx) if x 6= 0
and 0 if x = 0.

We first look at real input functions. In this case the Haar wavelets φ and ψ
readily satisfies Equation (2.7) in [7]. We take J = 3 in our example and consider
all possible three-layer paths for j = 0,−1,−2. We have three branches from
each node. Therefore we have outputs from 1 + 3 + 32 + 33 = 40 nodes.

To convert the settings to our notations in this paper, we have a three-
layer convolutional network (as in Section 2) for which the filters are given by
g1,l1 , l1 ∈ {1, 2, 3}, g2,l2 , l2 ∈ {1, · · · , 9} and g3,l3 , l3 ∈ {1, · · · , 27}, where

gm,l =


ψ, if mod (l, 3) = 1;

ψ2−1 , if mod (l, 3) = 2;

ψ2−2 , if mod (l, 3) = 0.

q = ((1, l1), (2, l2), (3, l3)) is a path if and only if l2 ∈ {3l1 − k, k = 1, 2, 3}
and l3 ∈ {3l2 − k, k = 1, 2, 3}. q = ((1, l1), (2, l2)) is a path if and only if
l2 ∈ {3l1 − k, k = 1, 2, 3}. The set of all paths is

Q = {∅, {(1, 1)}, {(1, 2)}, {(1, 3)}, {(1, 1), (2, 1)}, {(1, 1), (2, 2)}, {(1, 1), (2, 3)},
{(1, 2), (2, 4)}, {(1, 2), (2, 5)}, {(1, 2), (2, 6)}, {(1, 3), (2, 7)}, {(1, 3), (2, 8)},
{(1, 3), (2, 9)} ∪ {(1, l1), (2, l2), (3, l3), 1 ≤ l1 ≤ 3,

l2 ∈ {3l1 − k, k = 1, 2, 3}, l3 ∈ {3l2 − k, k = 1, 2, 3}} .

Also, for the output generation, φ1 = φ2 = φ3 = φ4 = 2−Jφ(2−J ·). An illustra-
tion of the network is as in Figure 7.
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Figure 7: The scattering network in the example

The list of sets of filters Gqm and Gm are

G∅1 = {g1,1, g1,2, g1,3} ;

G
(1,1)
2 = {g2,1, g2,2, g2,3} ;

G
(1,2)
2 = {g2,4, g2,5, g2,6} ;

G
(1,3)
2 = {g2,7, g2,8, g2,9} ;

G
((1,1),(2,1))
3 = {g3,1, g3,2, g3,3} ;

· · ·

G
((1,3),(2,9))
3 = {g3,25, g3,26, g3,27} ;

and
G1 = {g1,1, g1,2, g1,3} ;

G2 = {g2,1, · · · , g2,9} ;

G3 = {g3,1, · · · , g3,27} .

The first approach. We use backpropagation and the chain rule. Note that
ψ2j (t) = 2jψ(2jt) and thus ‖ψ‖1 = ‖ψ2j‖1 = 1. Therefore ‖gm,l‖1 = 1 for all
m, l. Similarly, ‖φj‖1 = 1 for all j. Let y’s denote the outputs and z’s denote
the intermediate values, as marked in Figure 7. Note that each y is associated
with a unique path. Consider two inputs f and f̃ , and r ≥ 1. Take a path

17



q = ((1, l1), (2, l2), (3, l3)) we have

‖y4,l3 − ỹ4,l3‖r = ‖(z3,l3 − z̃3,l3) ∗ φ4‖r ≤ ‖z3,l3 − z̃3,l3‖r ‖φ4‖1 = ‖z3,l3 − z̃3,l3‖r ;

‖z3,l3 − z̃3,l3‖r = ‖|z2,l2 ∗ g3,l3 | − |z̃2,l2 ∗ g3,l3 |‖r ≤
‖z2,l2 − z̃2,l2‖r ‖g3,l3‖1 = ‖z2,l2 − z̃2,l2‖r ;

‖z2,l2 − z̃2,l2‖r = ‖|z1,l1 ∗ g2,l2 | − |z̃1,l1 ∗ g2,l2 |‖r ≤
‖z1,l1 − z̃1,l1‖r ‖g2,l2‖1 = ‖z1,l1 − z̃1,l1‖r ;

‖z1,l1 − z̃1,l3‖r =
∥∥∥|f ∗ g1,l1 | − ∣∣∣f̃ ∗ g1,l1 ∣∣∣∥∥∥

r
≤
∥∥∥f − f̃∥∥∥

r
‖g1,l1‖1 =

∥∥∥f − f̃∥∥∥
r
.

and similarly for all output ym,lm ’s. Therefore, we have

|||Φ(f)− Φ(f̃)|||2 =
∑
m,lm

‖ym,lm − ỹm,lm‖
2
2 ≤ 40

∥∥∥f − f̃∥∥∥2
2
.

The second approach. According to the result from multi-resolution analysis,

we have
∣∣∣φ̂2−J (ω)

∣∣∣+
∑0
j=−2

∣∣∣ψ̂2j (ω)
∣∣∣2 ≤ 1 (plotted in Figure 8), we have B̃1 =

B̃2 = B̃3 = B̃4 = 1. Indeed, we can compute that

∣∣∣φ̂2−J (ω)
∣∣∣+

0∑
j=−2

∣∣∣ψ̂2j (ω)
∣∣∣2 = sinc2(8ω) + sinc2(ω/2) sin2(πω/2)+

sinc2(ω) sin2(πω) + sinc2(2ω) sin2(2πω) .

Thus in this way, according to our discussion in Section 2, we have |||Φ(f) −
Φ(f̃)|||2 ≤

∥∥∥f − f̃∥∥∥2
2
.

Figure 8: Plot of
∣∣∣φ̂2−J (ω)

∣∣∣+
∑0
j=−2

∣∣∣ψ̂2j (ω)
∣∣∣2
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The third approach. A lower bound is derived by considering only the output
y1,1 from the input layer. Obviously

|||Φ(f)− Φ(f̃)|||2 ≥
∥∥∥(f − f̃) ∗ φ1

∥∥∥2
1
.

Thus

sup
f 6=f̃

|||Φ(f)− Φ(f̃)|||2∥∥∥f − f̃∥∥∥2
2

≥ sup
f 6=f̃

∥∥∥(f − f̃) ∗ φ1
∥∥∥2
1∥∥∥f − f̃∥∥∥2

2

=
∥∥∥φ̂1∥∥∥2

∞
= 1 .

Therefore, 1 is the exact Lipschitz bound (and Lipschitz constant) in our exam-
ple.

4.2 A general 3-layer network

We now give an example of how to compute the Lipschitz constant as in Figure
9. In Figure 9 f is the input, y’s are the outputs and z’s are the intermediate
values within the network. We assume that p ≥ 2.

Figure 9: An example for computing the Lipschitz constant

Again we use three approaches to estimate the Lipschitz constant.
The first approach. In this approach we do not analyze the network by

layers, but directly look at the outputs. We make use of the following rules:
(1) backpropagation using the product rule and the chain rule; (2) each p-norm
block is a multi-input-single-output nonlinear system with Lipschitz constant 1
for each channel.

Take two signals f and f̃ . We use ỹ’s and z̃’s to denote the outputs and
intermediate values corresponding to f̃ . Starting from the leftmost channels,
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we have for the first layer that

|y1 − ỹ1| =
∣∣∣(f − f̃) ∗ φ1

∣∣∣ ,
and thus for any 1 ≤ r ≤ ∞,

‖y1 − ỹ1‖r ≤
∥∥∥f − f̃∥∥∥

r
‖φ1‖1 . (4.1)

For the second layer we have

|y2,1 − ỹ2,1| = |(z1,1 − z̃1,1) ∗ φ2,2| ,

and thus
‖y2,1 − ỹ2,1‖r ≤ ‖z1,1 − z̃1,1‖r ‖φ2‖1 .

With
‖z1,1 − z̃1,1‖r ≤

∥∥∥f − f̃∥∥∥
r
‖g1,1‖1 ,

we have
‖y2,1 − ỹ2,1‖r ≤

∥∥∥f − f̃∥∥∥
r
‖g1,1‖1 ‖φ2‖1 . (4.2)

Similarly,
‖y2,2 − ỹ2,2‖r ≤ ‖z1,2 − z̃1,2‖r ‖φ2‖1 ,

and with

|z1,2 − z̃1,2| =
∣∣∣ (|f ∗ g1,2|p + |f ∗ g1,3|p + |f ∗ g1,4|p)

1/p−(∣∣∣f̃ ∗ g1,2∣∣∣p +
∣∣∣f̃ ∗ g1,3∣∣∣p +

∣∣∣f̃ ∗ g1,4∣∣∣p)1/p ∣∣∣
≤
(∣∣∣(f − f̃) ∗ g1,2

∣∣∣p +
∣∣∣(f − f̃) ∗ g1,3

∣∣∣p +
∣∣∣(f − f̃) ∗ g1,4

∣∣∣p)1/p
≤
∣∣∣(f − f̃) ∗ g1,2

∣∣∣+
∣∣∣(f − f̃) ∗ g1,3

∣∣∣+
∣∣∣(f − f̃) ∗ g1,4

∣∣∣
we have

‖z1,2 − z̃1,2‖r ≤
∥∥∥f − f̃∥∥∥ (‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1) .

Therefore

‖y2,2 − ỹ2,2‖r ≤
∥∥∥f − f̃∥∥∥ (‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1) ‖φ2‖1 . (4.3)

For the third layer we have

‖y3,1 − ỹ3,1‖r ≤ ‖z2,1 − z̃2,1‖r ‖φ3‖1 .

With
‖z2,1 − z̃2,1‖r ≤ ‖z1,1 − z̃1,1‖r ‖g2,1‖1 ,

20



we have
‖y3,1 − ỹ3,1‖r ≤

∥∥∥f − f̃∥∥∥
r
‖g1,1‖1 ‖g2,1‖1 ‖φ3‖1 . (4.4)

Also,

|z2,2 − z̃2,2| =
∣∣∣ (|z1,1 ∗ g2,2|p + |z1,1 ∗ g2,3|p + |z1,2 ∗ g2,4|p)

1/p−

(|z̃1,1 ∗ g2,2|p + |z̃1,1 ∗ g2,3|p + |z̃1,2 ∗ g2,4|p)
1/p
∣∣∣

≤ (|(z1,1 − z̃1,1) ∗ g2,2|p + |(z1,1 − z̃1,1) ∗ g2,3|p +

|(z1,2 − z̃1,2) ∗ g2,4|p)1/p

≤ |(z1,1 − z̃1,1) ∗ g2,2|+ |(z1,1 − z̃1,1) ∗ g2,3|+ |(z1,2 − z̃1,2) ∗ g2,4| ,

which gives

‖z2,2 − z̃2,2‖r ≤ ‖z1,1 − z̃1,1‖r (‖g2,2‖1 + ‖g2,3‖1) + ‖z1,2 − z̃1,2‖r ‖g2,4‖1 .

A more obvious relation is

‖z2,3 − z̃2,3‖r ≤ ‖z1,2 − z̃1,2‖r ‖g2,5‖1 .

Under conditions in Theorem 3.3, we have

‖z2,4 − z̃2,4‖r = ‖z2,3z2,2 − z̃2,3z̃2,2‖r
= ‖z2,3z2,2 − z̃2,3z2,2 + z̃2,3z2,2 − z̃2,3z̃2,2‖r
≤ ‖z2,3 − z̃2,3‖r ‖z2,2‖∞ + ‖z̃2,3‖∞ ‖z2,2 − z̃2,2‖r
≤ ‖z2,2 − z̃2,2‖r + ‖z2,3 − z̃2,3‖r ,

and consequently we have

‖y3,2 − ỹ3,2‖r ≤ ‖z2,4 − z̃2,4‖r ‖φ3‖1
≤ (‖z2,2 − z̃2,2‖r + ‖z2,3 − z̃2,3‖r) ‖φ3‖1
≤ ‖z1,1 − z̃1,1‖r (‖g2,2‖1 + ‖g2,3‖1) ‖φ3‖1 +

‖z1,2 − z̃1,2‖r (‖g2,4‖1 + ‖g2,5‖1) ‖φ3‖1
≤
∥∥∥f − f̃∥∥∥

r

(
‖g1,1‖1 (‖g2,2‖1 + ‖g2,3‖1)+

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)(‖g2,4‖1 + ‖g2,5‖1)
)
‖φ3‖1 .

(4.5)
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Collecting (4.1)-(4.5) we have∑
m,l

‖ym,l − ỹm,l‖r ≤
∥∥∥f − f̃∥∥∥

r

(
‖φ1‖1 + ‖g1,1‖1 ‖φ2‖1 +

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1) ‖φ2‖1 +

‖g1,1‖1 ‖g2,1‖1 ‖φ3‖1 +
(
‖g1,1‖1 (‖g2,2‖1 + ‖g2,3‖1)+

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)(‖g2,4‖1 + ‖g2,5‖1)
)
‖φ3‖1

)
=
∥∥∥f − f̃∥∥∥

r

(
‖φ1‖1 + (‖g1,1‖1 + ‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)

‖φ2‖1 +
(
‖g1,1‖1 (‖g2,1‖1 + ‖g2,2‖1 + ‖g2,3‖1)+

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)(‖g2,4‖1 + ‖g2,5‖1)
)
‖φ3‖1

)
.

On the other hand we also have

|||Φ(f)− Φ(f̃)|||2 =
∑
m,l

‖ym,l − ỹm,l‖22

≤
∥∥∥f − f̃∥∥∥2

2

(
‖φ1‖21 + ‖g1,1‖21 ‖φ2‖

2
1 +

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)2 ‖φ2‖21 +

‖g1,1‖21 ‖g2,1‖
2
1 ‖φ3‖

2
1 +

(
‖g1,1‖1 (‖g2,2‖1 + ‖g2,3‖1)+

(‖g1,2‖1 + ‖g1,3‖1 + ‖g1,4‖1)(‖g2,4‖1 + ‖g2,5‖1)
)2
‖φ3‖21

)
.

(4.6)
The second approach. To apply our formula, we first add δ’s and form

a network as in Figure 10. We have a three-layer network and as we have
discussed, we can compute, since p ≥ 2, that

B̃1 =

∥∥∥∥|ĝ1,1|2 + |ĝ1,2|2 + |ĝ1,3|2 + |ĝ1,4|2 +
∣∣∣φ̂1∣∣∣2∥∥∥∥

∞
;

B̃2 = max

{
1,

∥∥∥∥|ĝ2,1|2 + |ĝ2,2|2 + |ĝ2,3|2 +
∣∣∣φ̂2∣∣∣2∥∥∥∥

∞
,

∥∥∥∥|ĝ2,4|2 + |ĝ2,5|2 +
∣∣∣φ̂2∣∣∣2∥∥∥∥

∞

}
;

B̃3 = max

{
2,
∥∥∥φ̂3∥∥∥2

∞

}
;

B̃4 = max

{
1,
∥∥∥φ̂3∥∥∥2

∞

}
.

Then the Lipschitz constant is given by (B̃1B̃2B̃3B̃4)1/2, that is,

|||Φ(f)− Φ(f̃)|||2 ≤ (B̃1B̃2B̃3B̃4)
∥∥∥f − f̃∥∥∥2

2
. (4.7)
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Figure 10: An equivalent reformulation of the same network as in Figure 9

The third approach. In general (4.7) provides a more optimal bound than
(4.6) because the latter does not consider the intrinsic relations of the filters that
are grouped together in the same layer. The actual Lipschitz bound can depend
on the actual design of filters, not only on the Bessel bounds. We do a numerical
experiment in which the Fourier transform of the filters in the same layer are
the (smoothed) characteristic functions supported disjointly in the frequency
domain.

Define F (ω) = exp(4ω2/(4ω2 − 1)) · χ(−1/2,0)(ω), and G(ω) = F (−ω). The
fourier transform of the filters are defined to be

φ̂1(ω) = F (ω + 1) + χ(−1,1)(ω) +G(ω − 1)

ĝ1,1(ω) = F (ω + 3) + χ(−3,−2)(ω) +G(ω + 2) + F (ω − 2) + χ(2,3)(ω) +G(ω − 3)

ĝ1,2(ω) = F (ω + 5) + χ(−5,−4)(ω) +G(ω + 4) + F (ω − 4) + χ(4,5)(ω) +G(ω − 5)

ĝ1,3(ω) = F (ω + 7) + χ(−7,−6)(ω) +G(ω + 6) + F (ω − 6) + χ(6,7)(ω) +G(ω − 7)

ĝ1,4(ω) = F (ω + 9) + χ(−9,−8)(ω) +G(ω + 8) + F (ω − 8) + χ(8,9)(ω) +G(ω − 9)

φ̂2(ω) = F (ω + 2) + χ(−2,2)(ω) +G(ω − 2)

ĝ2,1(ω) = F (ω + 4) + χ(−4,−3)(ω) +G(ω + 3) + F (ω − 3) + χ(3,4)(ω) +G(ω − 4)

ĝ2,2(ω) = F (ω + 6) + χ(−6,−5)(ω) +G(ω + 5) + F (ω − 5) + χ(5,6)(ω) +G(ω − 6)

ĝ2,3(ω) = F (ω + 8) + χ(−8,−7)(ω) +G(ω + 7) + F (ω − 7) + χ(7,8)(ω) +G(ω − 8)

ĝ2,4(ω) = F (ω + 5) + χ(−5,−3)(ω) +G(ω + 3) + F (ω − 3) + χ(3,5)(ω) +G(ω − 5)

ĝ2,5(ω) = F (ω + 8) + χ(−8,−6)(ω) +G(ω + 6) + F (ω − 6) + χ(6,8)(ω) +G(ω − 8)

φ̂3(ω) = F (ω + 9) + χ(−9,9)(ω) +G(ω − 9)

Then each function is in C∞C (R̂).
We numerically compute the L1 norms of the inverse transform of the above

functions using IFFT and numerical integration with stepsize 0.025: ‖φ1‖1 =
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1.8265, ‖g1,1‖1 = 2.0781, ‖g1,2‖1 = 2.0808, ‖g1,3‖1 = 2.0518, ‖g1,4‖1 = 2.0720,
‖φ2‖1 = 2.0572, ‖g2,1‖1 = 2.0784, ‖g2,2‖1 = 2.0734, ‖g2,3‖1 = 2.0889, ‖g2,4‖1 =
2.2390, ‖g2,5‖1 = 2.3175, ‖φ3‖1 = 2.6378. Then the constant on the right-hand
side of Inequality (4.6) is 966.26, and by taking the square root we get the
Lipschitz bound computed using the first approach is equal to Γ1 = 98.3.

It is no effort to conclude that in the second approach, B̃1 = B̃2 = B̃4 = 1
and B̃3 = 2. Therefore the Lipschitz bound computed using the second approach
is Γ2 =

√
2. Note that in this example the conditions in Lemma 3.5 is satisfied.

The experiment suggests that the Lipschitz bound associated with our set-
ting of filters is Γ3 = 1.1937. We numerically compute the output of the network
and record the largest ratio |||Φ(f) − Φ(f̃)|||/||f − f̃ ||2 over one million itera-
tions. Numerically, we consider the range [−20, 20] for both the time domain
and the frequency domain and take stepsize to be 0.025. For each iteration we
generate two randomly signals on [−20, 20] with stepsize 1 and then upsample
to the same scale with stepsize 0.025.

We conclude that the näıve first approach may lead to a much larger Lip-
schitz bound for analysis, and the second approach gives a more reasonable
estimation.
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