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We present a microscopic calculation of the phase diagram of the Ising superconductor NbSe2 in
the presence of both in-plane magnetic fields and Rashba spin-orbit coupling. Repulsive interactions
lead to two distinct instabilities, in singlet- and triplet- interaction channels. In the regime of large
fields, the topological character of the superconducting state depends strongly on the magnetic field
direction. When the field is applied along one of the three Γ-K lines, a crystalline nodal topological
superconducting phase is stabilized, whereas for other field directions the pairing state is topolog-
ically trivial. In the regime of large Rashba and dominant triplet interactions, a chiral topological
superconducting phase emerges, in which time-reversal symmetry is spontaneously broken and the
system acquires a Chern number of ±6.

Introduction. The observation of superconductivity
(SC) in 1H monolayer transition metal dichalcogenides
such as NbSe2 and MoS2 opens a new avenue to explore
superconductivity in systems with strongly coupled spin-
orbital degrees of freedom [1–11]. In contrast to their
bulk counterparts, in-plane inversion symmetry is bro-
ken in these monolayers, giving rise to an Ising spin-
orbit coupling (SOC) that forces the spins to point out-
of-plane [7, 8, 12–14]. This Ising SOC is believed to be
responsible for the experimental observation that the su-
perconducting state survives up to remarkably large in-
plane magnetic fields, far beyond the usual Pauli limit
[5–7, 10, 15, 16].

The combination of large Ising SOC, which lifts the
spin degeneracy, together with multiple Fermi pock-
ets, has inspired considerable interest in the potential
for unconventional superconductivity in these materials
[12, 15, 17–27]. In gated MoS2, which has four spin-split
Fermi pockets centered at the ±K points of the hexago-
nal Brillouin zone, repulsive inter-band interactions can
stabilize a fully gapped triplet SC state [19, 24, 25].
Chiral topological superconductivity [28] both with and
without large Rashba SOC has also been predicted in
MoS2 [24, 26, 29], as has finite-momentum Cooper pair-
ing [26]. In NbSe2 and its close relative TaS2, which
have Fermi pockets centered at the ±K and Γ points, it
was argued that for in-plane magnetic fields larger than
the Pauli limiting field, a nodal topological SC state is
realized, protected by an anti-unitary time-reversal like
symmetry and characterized by Majorana flat bands at
the sample’s edges [17, 22].

Despite the flurry of activity on this front, impor-
tant questions about these SC states remain unaddressed,
particularly regarding their microscopic origin and their
stability in realistic experimental conditions. Elucidat-
ing these issues is essential not only from a fundamental
standpoint, but also to provide concrete guidance for ex-
periments. In this paper, we present a microscopic theory
of superconductivity in NbSe2. Our focus is on determin-
ing the phase diagram as a function of two experimen-
tally tunable quantities: Rashba SOC, with energy scale
αRpF (pF is the Fermi momentum), which can be con-

FIG. 1. Phase diagram for NbSe2 as a function of the Rashba
SOC (αR) and in-plane magnetic field B oriented along the
Γ-K direction, in units of the Ising SOC βI . In panel (a)
(panel (b)), the leading SC instability for αR = B = 0 is
a singlet extended s-wave state (triplet f -wave state). Dots
and solid lines denote phase transition boundaries; dashed
lines indicate approximate boundaries.

trolled by gating or by the choice of substrate, and an
in-plane magnetic field B. Whereas the effects of Ising
SOC, αRpF and B on different superconducting states
have been studied separately [15, 17, 20–22, 30–32], their
combined role has yet to be addressed. Moreover, in
contrast to several previous investigations, here the pos-
sible SC states are microscopically determined from the
repulsive electronic interactions that are allowed by the
fermiology of NbSe2.

Our analysis reveals two distinct (B, αR) phase dia-
grams, shown in Fig. 1. If the inter-band repulsion cou-
pling the Γ and ±K Fermi pockets dominates, the SC
state for B = αR = 0 is a singlet extended s-wave state
with nearly isotropic gaps of opposite signs at Γ and ±K
(Fig. 1a). If the inter-band processes coupling the K
and −K Fermi pockets dominates, the SC instability for
B = αR = 0 is towards a triplet f -wave state, character-
ized by isotropic gaps of opposite signs at K and −K,
and a nodal gap at Γ.

These two phase diagrams host two topological su-
perconducting phases distinct from those previously dis-
cussed for NbSe2. First, we find that the nodal topologi-
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FIG. 2. The Fermi surface of NbSe2 in the presence of Ising
SOC and a weak Rashba SOC. The colors indicate the out-
of-plane spin polarization of each pocket. The arrows denote
the four distinct types of repulsive electronic interactions that
contribute to the pairing instability.

cal phase predicted at magnetic fields exceeding the Pauli
limit in [17] is destroyed by an arbitrarily small Rashba
SOC, which lifts the nodes as it breaks the time-reversal-
like symmetry that protects them. However, when the
B field is parallel to one of the Γ-K directions, the sys-
tem realizes a crystalline nodal topological SC, with zero-
energy boundary flat bands protected by a mirror sym-
metry. Second, when inter-band repulsion between the
K and −K pockets dominates over inter-band repulsion
between K and Γ pockets, for B ' 0 but large αR we find
a chiral topological p± ip SC that spontaneously breaks
time-reversal symmetry, with a thermal Hall conductance
κxy = 6

(
π2k2

B/3h
)
T .

Microscopic model and superconductivity. The Fermi
surface of undoped NbSe2 is shown in Fig. 2. The non-
interacting Hamiltonian is given by:

H0 =
∑
ηp

ψ†η,p [εη(p) + βη(p)σz + αR(σ × p)z]ψη,p (1)

where ψ†η,p = (d†η,p↑, d
†
η,p↓) and d†η,ps creates an elec-

tron at band η with spin s =↑, ↓ and momentum p mea-
sured relative to the center of the pocket. The Fermi
surface has three pairs of spin-split hole pockets cen-
tered at the η = ±K,Γ points of the Brillouin zone.

Here εη(p) = − p2

2mη
− µ is the band dispersion, with

band masses mη satisfying mK = m−K . The Ising
SOC has the form β±K = ±βI near the ±K points
and βΓ = 2λp3 cos 3θ near the Γ point, where θ is the
angle measured relative to the Γ-K direction (see Fig.
2). Although Ising SOC vanishes along the Γ-M lines,
αR does not, so the spin-degeneracy is fully lifted on all
Fermi pockets. An in-plane magnetic field B adds a term
HZeeman = −

∑
ηp ψ

†
η,p (b · σ)ψη,p, where b ≡ gLµBB

and gL is the Landé g-factor; this also lifts the spin-
degeneracy along the Γ-M lines.

There are eight possible momentum-independent elec-
tronic interactions gi corresponding to density-density,
pair-hopping, and exchange-like processes involving the
low-energy states (see e.g. [26, 33]). The absence of

nesting in the Fermi surface ensures that the only insta-
bility driven by these low-energy states is the SC one.
Of the eight interactions, only the four shown in Fig. 2
contribute directly to such pairing: intra-pocket density-
density interactions involving the Γ (g1) and the ±K (g2)
pockets; and inter-pocket pair-hopping interactions be-
tween K and −K (g3) and between Γ and ±K (g4). The
interacting Hamiltonian relevant to superconductivity is
thus given by (momentum indices are suppressed for sim-
plicity):

HInt =
g1

2
d†Γsd

†
Γs′dΓsdΓs′ +

g2

2
d†Ksd

†
−Ks′dKsd−Ks′+

+
g3

2
d†Ksd

†
−Ks′d−KsdKs′ +

g4

2
d†±Ksd

†
∓Ks′dΓs′dΓs + h.c.

(2)

To analyze the SC instabilities in the absence of SOC
and magnetic fields, we introduce the gap functions at
the Γ pocket, (∆Γ (p))ss′ ∝ 〈dΓ,psdΓ,−ps′〉, and at the

±K pockets, (∆K (p))
εε′

ss′ ∝ 〈dεK,psdε′K,−ps′〉, and solve
the linearized gap equations (see supplementary mate-
rial, SM). Here s, s′ are spin indices and ε, ε′ = ±1
are valley indices. Focusing on pairing with zero center-
of-mass momentum forces ε and ε′ to be opposite. Even
when all gi interactions are purely repulsive, there are two
possible SC instabilities, provided that one of the inter-
pocket interactions, g3 or g4, overcomes the intra-pocket
repulsion promoted by g1 and g2. When g4 is dominant,
the resulting SC state is a singlet s-wave, with isotropic

gaps (∆Γ (p))ss′ = ∆Γ,0 (iσy)ss′ and (∆K (p))
εε′

ss′ =
∆K,0 (iσy)ss′ (τx)εε′ . Here, σ and τ are Pauli matrices
in spin and valley spaces, respectively. Because the two
gaps have opposite signs, sgn (∆Γ,0) = −sgn (∆K,0), this
is the so-called extended s-wave or s±-wave state, previ-
ously proposed to be realized e.g. in iron pnictides [34]
and strontium titanate [35].

In contrast, when g3 is the dominant interaction,
the SC instability is towards a triplet f -wave state,
characterized by (∆Γ (p))ss′ = [(dΓ (p) · σ) iσy]ss′

and (∆K (p))
εε′

ss′ = [(dK (p) · σ) iσy]ss′ (iτy)εε′ . Here,

dΓ (p) = ∆Γ,0 cos 3θ d̂Γ is the d-vector of the Γ pocket

gap, whereas dK (p) = ∆K,0 d̂K is the d-vector of the K
pocket gap. Unlike typical triplet gaps, here dK (p) is
momentum independent, as ∆K (p) is anti-symmetric in
the valley degrees of freedom. Note that if we only used
the momentum-independent interactions in Eq. (S1),
∆Γ (p) would formally be zero. We therefore include
sub-leading momentum-dependent interactions, which do
not contribute significantly to the pairing instability, such
that ∆Γ (p) becomes non-zero (see SM).

While here our focus is on SC due to purely electronic
interactions, the SC states obtained above are not neces-
sarily inconsistent with attractive electron-phonon inter-
actions. This is particularly the case if their main effect is
to promote intra-pocket attraction, which would reduce
the amplitude – or even change the sign – of the g1, g2
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terms. On the other hand, if they have a strong effect on
the inter-pocket terms, a standard s-wave SC state may
be favored instead.

Superconducting phase diagrams in the presence of
SOC. To solve the gap equations in the presence of Ising
and Rashba SOC, as well as magnetic fields, we first per-
form a unitary transformation Usητ (p) that diagonalizes
the non-interacting Hamiltonian H0 +HZeeman, resulting
in new electronic operators cη,pτ = Usητ (p) dη,ps. Here,
τ = ±1 replaces the spin index s =↑, ↓ and labels respec-
tively the inner and outer non-spin-degenerate pockets
centered at η = Γ,±K. The out-of-plane spin compo-
nents on each pocket are illustrated in Fig. 2. For SC
states with zero momentum, the paired electrons are ei-
ther both from inner pockets or both from outer pockets.
The gap functions are now ∆ητ (p) ∝ 〈cηpτ c−η−pτ 〉 with
non-trivial momentum dependence arising from the uni-
tary transformation Usητ (p) (details in the SM).

We obtain two qualitatively different (b, αR) SC phase
diagrams depending on which interactions are dominant.
In Fig. 1(a), the dominant interactions give the singlet
extended s-wave state in the limit of vanishing SOC and
B, whereas in Fig. 1(b), this state would be the triplet
f -wave state discussed above. For this reason, we re-
fer to them, respectively, as the “singlet instability” and
“triplet instability” phase diagrams. Note, however, that
the SC states themselves are always a mixture of singlet
and triplet for finite SOC and B.

We first analyze the singlet-instability phase diagram,
Fig. 1(a). Across the entire phase diagram, the gap at
the ±K pockets is nearly isotropic. Along the b = 0
axis, the main effect of increasing the Rashba SOC αR
is to make ∆Γτ (p) mildly anisotropic, due to the small
admixture of the nodal triplet f -wave state. Importantly,
no phase transition happens along this axis. In contrast,
along the αR = 0 axis, a phase transition takes place to
a nodal topological SC state for b = bP , where bP ≈ ∆Γ1

corresponds roughly to the Pauli-limiting field [36, 37].
This phase transition, and the topological character of
the resulting nodal SC state, were previously predicted in
Ref. [17] and can be understood as a consequence of the
vanishing of the Ising SOC along the six Γ-M directions,
where the 12 nodes (6 for each Γ pocket) appear due to
spins aligning with the magnetic field.

However, moving away from the αR = 0 axis, the
Rashba SOC introduces a second spin-orbit energy scale
that does not vanish along the Γ-M directions. As a re-
sult, even an infinitesimal Rashba SOC lifts the nodes
and destroys the topological character of this state. The
only exception is when B is aligned along one of the Γ-
K directions: in this case, as we discuss in detail below,
the system has a mirror symmetry that protects the four
nodes located along the Γ-M direction perpendicular to
B (while the other eight nodes are lifted). The result is
a crystalline nodal topological SC phase, which remains
stable provided that b > αRpF . This behavior is illus-
trated in Fig. 3(a) and (b), which show the evolution of
∆Γ1 (p) as one moves along a cut (see inset) in the phase

diagram of Fig. 1(a) for B oriented along a direction dif-
ferent from Γ-K (panel a) or a direction coinciding with
Γ-K (panel b).

We now move on to the triplet-instability phase dia-
gram, displayed in Fig. 1(b). The region b > αRpF of the
(b, αR) phase diagram is very similar to that obtained for
the singlet-instability case, except that the nodal topo-
logical SC state along the αR = 0 line occurs for arbi-
trarily small values of b, due to the absence of the Pauli
limit in this regime [36, 37]. In contrast, along the b = 0
axis the phase diagram of Fig. 1(b) is quite distinct from
that of Fig. 1(a). First, the nodes on the Γ pocket at
αR = b = 0 are lifted due to a symmetry-allowed ad-
mixture with the sub-leading singlet state, resulting in
an anisotropic gap. This is shown in Fig. 3(c), which
presents the evolution of ∆Γ1 (p) along the b = 0 axis for
increasing αR (the gaps at ±K remain nearly isotropic).
Note that to generate all symmetry-allowed terms, we
include a small difference between the inner and outer
DOS in the plots of Fig. 3, and show only ∆Γ1. As the
difference in DOS is small, ∆Γ,−1 behaves very similarly.

Second, for a critical value of αR, analyzing the gap
equations beyond the linearized approximation (see SM),
we find a phase transition to a chiral p ± ip supercon-
ducting state. This chiral state occurs because at large
αR and b = 0, the gap formally transforms as a two-
dimensional irreducible representation of the relevant C3v

point group, and time reversal is spontaneously broken
[38, 39]. While our calculations give a nodal gap ∆Γτ (p)
(shown in Fig. 3(d)), these nodes are not symmetry-
enforced, and can be lifted by sub-leading terms not in-
cluded in our model. This results in a gapped chiral
topological SC with a Chern number of ±6 (±2 from the
Γ pocket, and ±4 from the ±K pockets), and gapless chi-
ral edge modes resulting in a thermal Hall conductance
κxy = ±6

(
π2k2

B/3h
)
T [28]. This topological SC phase

survives for some range of b, but our approach is insuf-
ficient to quantitatively obtain the phase boundary (see
dashed lines in Fig. 1(b)).

Crystalline nodal topological superconductivity. Having
established the existence of a nodal SC phase for large
magnetic fields in the phase diagrams of Fig. 1, we now
discuss its topological properties. As discussed in Refs.
[40–43], two-dimensional nodal topological phases are
stable only in the presence of certain symmetries, which
guarantee both stability of the bulk nodes, and of the
gapless flat-bands found at the edges. When αR = 0, the
SC state has both particle-hole symmetry and an anti-
unitary time-reversal-like symmetry T̃ =MzT = iσxK,
where K is complex conjugation, and σx acts on the spin
index. Physically, T̃ is a composition of time-reversal
symmetry T and a reflection Mz with respect to the
xy plane. T̃ reverses the in-plane momentum and the
z component of the spin, satisfying T̃ 2 = 1. This time-
reversal-like symmetry places the system into symmetry
class BDI [44, 45] and protects the 12 nodes of the su-
perconducting gap on the two Γ pockets along the Γ-M
lines, ensuring that the boundary flat bands cannot be
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FIG. 3. Superconducting gap ∆Γ1 at the outer Γ pocket, as
a function of the angle θ with respect to the Γ-K direction,
in various regions of the phase diagrams of Fig. 1 (for precise
parameter values, see SM). Panels (a) and (b) correspond to
the cuts across the phase diagram of Fig. 1(a) shown in the
insets, with a magnetic field away from the Γ-K direction
(panel (a)) and along (panel (b)) the Γ-K direction. Panels
(c) and (d) correspond to cuts along the b = 0 axis of the
phase diagram of Fig. 1(b), outside and inside the chiral SC
phase, respectively (see insets). Note that the gap amplitudes
have been rescaled for clarity, since they are not fixed by the
linearized gap equations.

gapped [22, 42]. However, a finite Rashba SOC breaks

the T̃ symmetry, implying that for generic in-plane field
directions the system is in a fully gapped, topologically
trivial SC phase with no protected zero-energy boundary
states.

The notable exception is when B is parallel to one of
the Γ-K directions: in this case, the system has a mir-
ror symmetry that reflects about the plane perpendicular
to B. Combined with particle-hole symmetry, this mir-
ror reflection can protect the four nodes in the reflection
plane (see inset of Fig. 4)[43, 46]. For example, when B
is parallel to the x axis, the mirror symmetry corresponds
to a reflection with respect to the yz plane perpendicular
to B, which also flips the y and z components of spin:
Mx = iσxRyz, where Ryz reflects (x, y, z) → (−x, y, z)
and as above, σx acts on the physical spin indices. As
discussed in the SM, for αRpF < b this symmetry forbids
any fermion bilinears that can lift the nodes. This anal-
ysis is sufficient [43] to guarantee topological stability of
the nodes; thus, the crystalline SC state is stable in a
wide region of the phase diagrams of Fig. 1. We empha-
size that the topological nature of the αR 6= 0 SC state is
qualitatively different than of the αR = 0 SC state, as in
the former case the symmetry that protects the SC state
is not time-reversal-like, but a mirror symmetry of the
crystal – hence the denomination crystalline topological
SC. Note that in the presence of both b and αR, the Fermi
surfaces are no longer centered at zero momentum, and

FIG. 4. Spectrum of the BdG Hamiltonian in the nodal
topological crystalline SC phase on a 100 × ∞ unit cell
strip with B = Bx̂. Blue indicates bulk eigenstates, while
red indicates eigenstates concentrated near the boundaries.
p̃y = py + py,shift is a monotonic function of py that accounts
for the shift of the Fermi surfaces. Inset: Position of the
nodes (red dots) in the Brillouin zone. Dashed lines indicate
how boundary flat bands connect the bulk nodes. For detailed
parameter values, see SM.

thus the Cooper pairs have a finite center-of-mass mo-
mentum pshift, ∆η,τ ∝ 〈cη,p+pshift,τ cη,−p+pshift,τ 〉.

A striking feature of the crystalline nodal topological
SC phase is the existence of gapless flat-band boundary
modes that are protected by the mirror symmetry. Fig. 4
shows the resulting Bogolyubov-de Gennes (BdG) spec-
trum on a 100×∞ unit cell strip with open zig-zag edges
parallel to the ŷ direction, and B = Bx̂. Each state
ψk is colored according to the inverse participation ra-
tio
∑
y |ψk(y)|4, such that the boundary flat bands are

red while the delocalized bulk bands are blue. In this
geometry, the boundary flat bands connect in a pairwise
fashion the four gap nodes located along kx = 0 (see
the inset of Fig. 4). Importantly, these boundary states
are pinned at zero energy by the mirror symmetry, af-
ter accounting for the finite-momentum pairing described
above (details in the SM). In actual materials, the exis-
tence of both bulk nodes and zero-energy boundary states
is guaranteed only if the relevant mirror reflection is an
exact symmetry. As such, these may be sensitive to ori-
entational defects in the crystal.

Concluding remarks: Our microscopic interacting
model for NbSe2 predicts multiple possible exotic super-
conducting phases in this material, tuned by the Rashba
SOC αR and the in-plane magnetic field B. Two dif-
ferent primary SC instabilities can be driven by purely
electronic interactions: a singlet extended s-wave and a
triplet f -wave SC state. The triplet instability supports
a chiral topological SC state for small b and large αR, and
both instabilities support a crystalline nodal topological
SC state for large b and small αR. Interestingly, the topo-
logical properties of the latter phase depend crucially on
the B field being aligned along one the Γ-K directions.

Although direct experimental detection of these topo-
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logical SC states via their edge modes may be techni-
cally challenging, their indirect experimental manifesta-
tions should be accessible. For instance, because the chi-
ral SC state transforms as a two-dimensional irreducible
representation of the trigonal space group, it should be
strongly affected by strain, with Tc splitting into 2 sepa-
rate transitions under externally applied uniaxial strain
[47]. As for the crystalline topological SC state, its ex-
treme sensitivity to the field direction is expected to pro-
mote strongly anisotropic properties. Specifically, since
the nature of the SC state changes as a function of the B
direction, one expects pronounced six-fold anisotropies in
the upper critical field and in the critical current. Such

anisotropies should vary significantly as the Rashba SOC
is changed.
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I. GAP EQUATIONS

The interactions presented in Eq. (2) of the main text
can be expressed in the form:

HInt =V α
′β′;αβ

Γ;Γ (p;k) d†Γ,pαd
†
Γ,−pβ′dΓ,kα′dΓ,−kβ′+

V α
′β′;αβ
±K;±K (p;k) d†±K,pαd

†
∓K,−pβd±K,kα′d∓K,−kβ′+

V α
′β′;αβ
±K;∓K (p;k) d†±K,pαd

†
∓K,−pβd∓K,kα′d±K,−kβ′+

V α
′β′;αβ

Γ;±K (p;k) d†±K,pαd
†
∓K,−pβdΓ,kα′dΓ,−kβ′ + h.c.

(S1)

where we have left implicit the momenta of the fermion
operators about each Fermi surface. Here, we will use
the indices α and β for the spin indices; in the main text,
we used s. Accounting for the anti-symmetric nature of
the fermion operators (and including all Hermitian con-
jugates), the uniform part of the interactions can be sep-
arated into singlet and triplet interaction channels, as
follows:

[V s]
α′β′;αβ
Γ;Γ = g1(iσy)αβ(iσy)α

′β′
(S2)

[V s]
α′β′;αβ
Γ;±K = ±g4(iσy)αβ(iσy)α

′β′

[V s]
α′β′;αβ
±K;±K =

1

2
(g2 + g3)(iσy)αβ(iσy)α

′β′

[
V t
]α′β′;αβ

±K;±K =
1

2
(g2 − g3)

∑
i=x,y,z

(σiiσy)∗αβ(σiiσy)α
′β′

Since VK,K and VK,−K are related by interchanging the
spin indices α′, β′, combined with an overall minus sign
for interchanging two fermion operators, in this represen-
tation we have

[V s]
α′β′;αβ
±K;∓K = [V s]

α′β′;αβ
±K;±K[

V t
]α′β′;αβ

±K;∓K = −
[
V t
]α′β′;αβ

±K;±K (S3)

From Eq. (S2), we see that V±K,±K (and thus
V±K,∓K) have contributions in both the singlet chan-
nel (labeled s) and the triplet channel (labeled t), while
for momentum-independent interactions, VΓ,Γ and VΓ,K

have contributions only in the singlet channel. In ad-
dition to these momentum independent interactions, in
order to ensure that the gap on the Γ pocket does not
artificially vanish in the triplet regime, we also include

weak (but symmetry-allowed) momentum dependent in-
teractions, so V (p;k) = V s + V t(p;k):[
V t(p;k)

]α′β′;αβ

Γ;Γ
= gt1 cos(3θk) cos(3θp)(iσy)αβ(iσy)α

′β′

[
V t(p;k)

]α′β′;αβ

Γ;±K = ±
√

2gt4 cos(3θk)(σiiσy)∗αβ(σiiσy)α
′β′

(S4)

where θk refers to the angle of the momentum on the Γ
pocket. We emphasize that we take |gti | � |gi|, such that
these interactions have a negligible effect on whether the
system enters the singlet or triplet regime.

Next, we express the interactions in terms of the eigen-
states of the single body Hamiltonian with Ising SOC,
Rashba SOC, and magnetic field. The non-interacting
Hamiltonian is diagonalized by performing a unitary
transformation

cη,pτ = Uαητ (p)dη,pα (S5)

where τ = +1 (−1) on the outer (inner) spin-split Fermi
surface, α = 1 (−1) for spin up (spin down), and we have
defined

UαΓτ (p) =

√
δΓ + τα(2λp3 cos 3θp)

2δΓ

(
τe−iφ

) 1+α
2

Uα±Kτ (p) =

√
δK ± ταβI

2δK

(
τe−iφ

) 1+α
2 (S6)

Here

δΓ =
√

(2λp3 cos(3θ))2 + (αRpy + bx)2 + (αRpx − by)2

δK =
√
β2
I + (αRpy + bx)2 + (αRpx − by)2

eiφ =
αRpy + bx + i(−αRpx + by)√
(αRpy + bx)2 + (αRpx − by)2

(S7)

where p is the momentum at the Fermi surface centered
at Γ or ±K, b ≡ gLµBB, αR is the Rashba SOC param-
eter, βI is the Ising SOC parameter at K, and λ is the
Ising SOC parameter at Γ. Projecting the interactions
onto the spin-split Fermi surfaces gives

HInt =Ṽ τ,τ
′

Γ,Γ c†Γτ c
†
Γτ cΓτ ′cΓτ ′+

Ṽ τ,τ
′

±K,±Kc
†
±Kτ c

†
∓Kτ c±Kτ ′c∓Kτ ′+

Ṽ τ,τ
′

±K,∓Kc
†
±Kτ c

†
∓Kτ c∓Kτ ′c±Kτ ′+

Ṽ τ,τ
′

Γ±Kc
†
±Kτ c

†
∓Kτ cΓτ ′cΓτ ′ (S8)



2

with (repeated indices are summed implicitly in the ex-
pression below):

Ṽ τ,τ
′

η,η′ (p,k) =

= Uαητ (p)Uβ−ητ (−p)Uα
′∗

η′τ ′(k)Uβ
′∗
−η′τ ′(−k)V αβ;α′β′

η,η′ (p;k)

(S9)

where we define the pocket index η = K,−K,Γ, and
use the convention that −Γ ≡ Γ. Note that after this
projection, all interactions are momentum-dependent.

The superconducting gaps are given by:

∆Γ,τ (p) ∝ 〈cΓ,pτ cΓ,−pτ 〉

∆
(ε,−ε)
K,τ (p) ∝ 〈cεK,pτ c−εK,−pτ 〉 (S10)

where the momentum p is measured with respect to
the center of the Fermi pocket in question in all cases,
and ε = ±1. For convenience of notation, we define

∆εK,τ (p) ≡ ∆
(ε,−ε)
K,τ (p). Because particle-hole symme-

try imposes ∆−K,τ (p) = −∆K,τ (−p), it is sufficient to
determine ∆K,τ only.

Ignoring the coupling between the inner and outer
Fermi surfaces centered at the high-symmetry points, the
linearized gap equation becomes:

∆η,τ (p) = −2 ln
Λ

Tc

∑
η′,τ ′

Nη′τ ′

∮
Ṽ τ,τ

′

η,η′ (p;k)∆η′,τ ′(k)
dθη′,k

2π

(S11)
where θη′,k is the angle along the τ ′ Fermi surface rela-
tive to the center of the pocket η′ (below we simply use θ
when this is clear from context), with Nη′τ ′ being the cor-
responding density of states. The projected interactions
can be expressed conveniently as:

Ṽ τ,τ
′

η,η′ (p,k) =
∑

µ=0,x,y,z

g
(µ)
η,η′Q

(µ)
η,τ (p)Q

(µ)∗
η′,τ ′(k) (S12)

where g
(µ)
η,η′ are constants independent of p and k. Ex-

plicitly, g
(0)
Γ,Γ = g1, g

(0)
Γ,±K = g

(0)
±K,Γ = g4, g

(0)
±K,±K =

g
(0)
±K,∓K = g2+g3

2 , and for i = x, y, z we have g
(i)
Γ,Γ = gt1,

g
(i)
Γ,±K = g

(i)
±K,Γ = gt4, g

(i)
±K,±K = g

(i)
±K,∓K = g2−g3

2 . We

can then parametrize ∆η,τ (k) =
∑
µD

(µ)
ητ Q

(µ)
η,τ (p) where

D
(µ)
ητ are gap coefficients independent of momentum to

be determined. Explicitly,

Q(0)
η,τ (p) =

∑
αβ

(iσy)αβU
α
ητ (p)Uβ−ητ (−p) (S13)

Q
(i)
±K,τ (p) = ±

∑
αβ

(iσiiσy)αβU
α
Kτ (p)Uβ−Kτ (−p)

Q
(i)
Γ,τ (p) =

√
2 cos(3θp)

∑
αβ

(iσiiσy)αβU
α
Γτ (p)UβΓτ (−p)

The additional factors of i in the last two expressions are

taken for convenience, making the D
(µ)
ητ coefficients real

when the density of states are equal on inner and outer

Fermi surfaces. The structure of the reduced equation

implies that we can take D
(µ)
ητ = D

(µ)
η−τ ≡ D

(µ)
η , and we

thus drop the τ index on D herafter. Moreover, particle-

hole symmetry enforces D
(µ)
K = D

(µ)
−K , consistent with the

fact that ∆−K,τ (p) = −∆K,τ (−p).
Plugging the form (S13) back into the gap equation

(S11) yields the reduced gap equation

D(µ)
η =

∑
η′µ′ g

(µ)
η,η′f

(µ)η′

(µ′) D
(µ′)
η′ (S14)

or more explicitly

D
(0)
Γ =

∑
µ

(
g1f

(0)Γ
(µ) D

(µ)
Γ + 2g4f

(0)K
(µ) D

(µ)
K

)
(S15)

D
(0)
K =

∑
µ

(
g4f

(0)Γ
(µ) D

(µ)
Γ + (g2 + g3)f

(0)K
(µ) D

(µ)
K

)
D

(i)
Γ =

∑
µ

(
gt1f

(i)Γ
(µ) D

(µ)
Γ + 2gt4f

(i)K
(µ) D

(µ)
K

)
D

(i)
K =

∑
µ

(
gt4f

(i)Γ
(µ) D

(µ)
Γ + (g2 − g3)f

(i)K
(µ) D

(µ)
K

)
where µ = 0, x, y, z, and form factors f

(µ′)η
(µ) given by:

f
(µ)η
(µ′) =− 2 ln

Λ

Tc

∮ ∑
τ

NητQ
(µ)∗
ητ Q(µ′)

ητ

dθη,k
2π

(S16)

Note that due to the SOC the singlet and triplet chan-
nels do not decouple in general, and the superconducting
gaps are neither spin singlet nor spin triplet. Eq. (S15)
can be expressed as an 8× 8 matrix equation, leading to
8 possible superconducting solutions, of which we choose
the one with the highest Tc. The solutions can be found
analytically when either the magnetic field or Rashba
SOC is absent, but otherwise the equations have to be
solved numerically.

To define the singlet and triplet instability regimes dis-
cussed in the main text, we consider the limit of no SOC
and magnetic field. In this case, the (0) term reduces to
the usual singlet gap, while (i) reduce to components of
the triplet gap with d vector aligned along i = x, y, z.
We define a dominant singlet (dominant triplet) insta-
bility to occur when the largest eigenvalue of the matrix
equation (S15) is for the spin singlet (spin triplet) gap.
The transition temperature for each channel is given by
the condition that the corresponding eigenvalue of the

gap equation equals 1. This yields T
(a)
c = Λ exp( −1

2Nγ(a) ),

where N is the DOS of all bands (assumed to be equal),
Λ is the upper energy cutoff, and:

γ(s) = −g1 − g2 − g3 +
√

(g1 − g2 − g3)2 + 8g2
4 (S17)

in the singlet channel and

γ(t) = g3 − g2 + |g2 − g3| (S18)

in the triplet channel. Thus, for repulsive interactions, a
SC state is realized when the the inter-band repulsions g3

and g4 dominate over the intraband repulsions g1 and g2.
In this case, the singlet instability dominates for large g4,
while the triplet instability dominates for large g3.
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Fig. 3 in the main text plots solutions of the gap
equations in different regimes. In panels (a) and (b),
the parameters were chosen to be λ/βI = 0.6, as well
as g2 = 1.2, g3 = 0.8, g4 = 2, gt1 = 0.2 and gt4 = 0.1
(all gs are given in units of the arbitrary positive inter-
action g1). The magnetic field angle with respect to the
Γ-K direction was set to be ϑ = 2π/25 and 0 for (a) and
(b), respectively. In panels (c) and (d), we took instead
g3 = 4.2. We also took the inner and outer densities of
states to differ by ten percent in all panels; this ensures
that the symmetry allowed mixings between the singlet
and triplet channels are present in our solutions.

II. SPONTANEOUS TIME-REVERSAL
SYMMETRY BREAKING

As discussed in the main text, for large enough αR
and b = 0, the triplet-instability phase diagram dis-
plays spontaneous time-reversal symmetry breaking, re-
sulting in a chiral p ± ip superconducting phase. To
show that indeed time-reversal symmetry is broken in
this phase, we need to go beyond the linearized gap
equations of the previous section. Note that in the ba-
sis (S5) we are working with, at b = 0 TRS acts as
T cη,pτT −1 = iτeiθc−η,−pτ , which means that it takes the

term ∆ητ (p)c†η,pτ c
†
−η,−pτ to −e−2iθ∆∗ητ (p)c†η,pτ c

†
−η,−pτ .

Taking ∆ητ (p) = eiΦητ (p)|∆ητ (p)|, TRS is satisfied iff

eiΦητ (p) = ±ie−iθ.
Assuming equal densities of states on inner and outer

Fermi surfaces, for b = 0 the different µ in the reduced

gap equation (S15) are not coupled, and we obtain a so-
lution to the gap equation for each µ = 0, x, y, z. We ex-

press these solutions in terms of ∆
(µ)
η,τ (p) ≡ D(µ)

ητ Q
(µ)
η,τ (p).

Explicitly, for b = 0,

∆
(0)
Γτ (p) = τie−iθD

(0)
Γ (S19)

∆
(0)
±Kτ (p) = τie−iθD

(0)
K

∆
(z)
Γτ (p) =

√
2ie−iθ cos2 3θ

λp3
F

δη(p)
D

(z)
Γ

∆
(z)
±Kτ (p) = ±ie−iθ βI

δη(p)
D

(z)
K

∆
(x)
Γτ (p) =

√
2ie−iθ sin θ cos 3θ

αRpF
δη(p)

D
(x)
Γ

∆
(x)
±Kτ (p) = ±ie−iθ sin θ

αRpF
δη(p)

D
(x)
K

∆
(y)
Γτ (p) =

√
2ie−iθ cos θ cos 3θ

αRpF
δη(p)

D
(y)
Γ

∆
(y)
±Kτ (p) = ±ie−iθ cos θ

αRpF
δη(p)

D
(y)
K

The key point is that the (x) and (y) solutions are de-
generate, i.e. have the same Tc. Formally, they belong
to the 2D E irrep of C3v, the relevant point group in this
regime. We therefore associate these two solutions with
px-wave and py-wave states. We now need to establish
whether all of the D

(x)
η and D

(y)
η are non-zero, and if

so, what their relative phase is. Instead of solving the
full non-linear gap equations, it is sufficient to focus on
the quartic term of the Ginzburg-Landau free energy. To
obtain it, we start with the Bogolyubov-Gor’kov Hamil-
tonian:

H = −1

4

∑
pητ
kη′τ ′

∆∗ητ (p)
(
Ṽ −1(p;k)

)η′τ ′

ητ
∆η′τ ′(k) +

1

2

∑
pητ

Ψ†pητHητ (p)Ψpητ +
1

2

∑
pητ

ξητ (p) (S20)

where we use the Nambu-Gor’kov representation Ψητ (p) = (cη,pτ , c
†
−η,−pτ )T and defined the Bogoliubov-de Gennes

(BdG) Hamiltonian

Hητ (p) =

(
ξητ (p) ∆ητ (p)
∆∗ητ (p) −ξ−ητ (−p)

)
. (S21)

Note that when TRS is broken, ξ−ητ (−p) 6= ξητ (p) in general. The BdG spectrum is given by the eigenvalues of the
BdG Hamiltonian, one of which is

Eητ (p) =
ξητ (p)− ξ−ητ (−p)

2
+

√(
ξητ (p) + ξ−ητ (−p)

2

)2

+ |∆ητ (p)|2 ≡ ξaητ (p) +
√
ξsητ (p)2 + |∆ητ (p)|2 (S22)

and the second is fixed by particle-hole symmetry to be
−E−ητ (−p). Using the fact that

det [−iω +Hητ (p)] = (−iω + Eητ (p)) (−iω − E−ητ (−p))
(S23)

we obtain the Ginzburg-Landau free energy:

F = −2T
∑
pητ

ln

[
2 cosh

(
βEητ (p)

2

)]
+ F0

(
|∆ητ |2

)
(S24)
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where in the last step we assumed b = 0, so ξητ (−p) =

ξητ (p). The contribution F0

(
|∆ητ |2

)
comes from the de-

coupling of the interaction; because it is purely quadratic
in the gaps, it is inconsequential for our analysis.

Expanding the free energy in powers of the gap func-
tion, we obtain, in quartic order:

F (4) =
7ζ (3)

32π2T 2

∑
ητ

∫
Nητ |∆ητ (p)|4 dθp

2π
(S25)

where ζ(x) is the Riemann zeta function. Substituting
the general form of the gap function:

∆Γτ (p) =
√

2ie−iθ cos 3θ
αRpF
δη(p)

(
D

(x)
Γ cos θ +D

(y)
Γ sin θ

)
(S26)

∆±Kτ (p) = ±ie−iθαRpF
δη(p)

(
D

(x)
K cos θ +D

(y)
K sin θ

)
(S27)

and approximating αRpF
δη(p) ≈ 1 (which is valid as long as

αRpF � λp3
F ), we obtain:

F (4) =
7ζ (3)

1024π2T 2

∑
ητ

Nητ

[
3

(∣∣∣D(x)
η

∣∣∣2 +
∣∣∣D(y)

η

∣∣∣2)2

(S28)

−4
∣∣∣D(x)

η

∣∣∣2 ∣∣∣D(y)
η

∣∣∣2 sin2 φxy

]
where φxy is the relative phase between D

(x)
η and D

(y)
η .

A straightforward minimization gives φxy = ±π2 , which
implies that the ground state is a p± ip superconducting
phase. Note that while the resulting ∆Γτ (p) is actu-
ally nodal, there is an additional symmetry allowed term
∆(3) = e3iθ that belongs to the same E irreducible rep-
resentation which lifts the nodes.

III. TOPOLOGICAL SUPERCONDUCTIVITY

In the main text, we predicted two types of topological
superconducting phases in NbSe2 beyond the nodal topo-
logical superconductor at large in-plane magnetic fields
previously discussed in the literature [17]. These were (1)
a fully gapped, chiral superconductor with total Chern
number 6 at large Rashba SOC similar to that recently
predicted in MoS2 [29], and (2) a crystalline nodal topo-
logical SC at large in-plane magnetic fields oriented along
the Γ-K lines. Here we support these claims by calcu-
lating the Chern number of the time-reversal breaking
superconductor, and discussing in more depth how sym-
metry protects the nodes and zero-energy boundary flat-
bands of the crystalline nodaltopological SC.

Chern number

The Chern number of a 2D material is given by

Ch =
1

2π

∫
BZ

Fητ (p) · d2p (S29)

where the Berry curvature vector is given by

Fητ (p) =
∑
ητ

∇×Aητ (p) (S30)

with Aητ (p) the usual Berry connection associated with
the occupied band only. For a superconductor, the
Berry connection is defined in terms of the normalized
eigenvectors of the BdG Hamiltonian (S21): Υητ (p) =

uητ (p)cη,pτ + vητ (p)c†−η,−pτ , via

Aητ (p) = i〈Υητ (p)|∇p|Υητ (p)〉. (S31)

In our case, the cη,pτ operators may carry a nontrivial
Berry phase due to the changing orientation of the asso-
ciated spin. One should therefore consider |Υητ (p)〉 as a
four component eigenvector in a basis of Nambu-Gor’kov

4-spinors Ψ
(4)
ητ (p) = (dη,p↑, dη,p↓, d

†
−η,−p↑, d

†
−η,−p↓)

T .
Since

cη,pτ = Uαητ (p)dη,pα (S32)

we thus have

|Υητ 〉 =


U1
ητ (p)uητ (p)

U−1
ητ (p)uητ (p)

U1∗
−ητ (−p)vητ (p)

U−1∗
−ητ (−p)vητ (p)

 . (S33)

where using the same notation as (S22) we have

uητ (p) =
ξsητ − Eητ (p)√

(ξsητ − Eητ (p))
2

+ |∆ητ (p)|2
(S34)

vητ (p) =
∆ητ (p)√

(ξsητ − Eητ (p))
2

+ |∆ητ (p)|2
(S35)

Below we calculate the Chern number for b = 0 and non-
zero αR only, in which case U1

ητ (p) = −i
∣∣U1
ητ (p)

∣∣ e−iθη,p
where θη,p is the angle of the momentum p measured
relative to the center of the Fermi pocket η. Defining
∆ητ (p) = |∆ητ (p)| eiΦητ (p), we find that in this regime
the Berry connection associated with the pocket η is

Aητ (p) =
∣∣U1
ητ (p)

∣∣2∇θηp − |vητ (p)|2 (∇Φητ (p) +∇θηp)
(S36)

For the two TRS-breaking linear combinations p + ip
(p − ip) that we found above, Φητ = 0 (Φητ = −2θη)
respectively, on both Γ and ±K pockets. To obtain the
Chern number we insert these expressions into (S36), and
integrate over an annulus around each component of the
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Fermi surface. Although in principle the integral in Eq.
(S29) should be carried out over the entire Brillouin zone,
in practice only this region proximate to the Fermi sur-
face contributes. To evaluate these integrals, we assume
that the gap function is constant in some region around
the FS, and completely vanishing in regions sufficiently
far from the FS, with a phase independent of the radial
direction p, and take

∣∣U1
ητ (p)

∣∣ to be independent of p.
Finally, observe that vητ changes rapidly from 0 to 1 in
the vicinity of the Fermi surface. For the pocket η, we
therefore obtain:

Chη =
1

2π

∫
(Fητ (p))pθ dp dθ =

1

2π

∫
∂p (Aητ (p))θ dp dθ

(S37)

=
1

2π

[∫
(Aητ (p))θ dθ

]p=∞
p=0

= − 1

2π
[Φητ (p) + θη,p]

2π
0

(S38)
where the integrals over θ and p are understood to be over
the tangential and normal directions in a disk including
the Fermi surface of the η pocket, respectively. This gives
a net Chern number of ±6, with a total contribution of
±4 from the ±K pockets, and of ±2 from the Γ pocket .

Symmetry Protected Crystalline Nodal Phase

Here we show using a general symmetry analysis that
in the presence of a mirror reflection symmetry the nodes
lying on the reflection plane perpendicular to the sample
plane indeed cannot be lifted provided that b > αRpF .
Note that a pair of nodes touch when b = αRpF and there
is a topological phase transition into a nodeless phase at
b < αRpF . We take the magnetic field to be along the
x̂ direction, in which case the mirror symmetry Mx is
reflection in the y − z plane perpendicular to the super-
conducting layer. This acts on the non-BdG Hamiltonian
as

M−1
x H(p)Mx = H(p̄) (S39)

where p̄ = (−px, py). Since this reflection also reverses
the y and z components of the spin, in the spin basisMx

acts as iσx, while in the SOC basis (S5) it is momentum
dependent, Mx = −iτe−iφ(p).

This action of mirror symmetry can be extended to the
BdG spinors, to give

M̃x(p) =

(
Mx(p) 0

0 −M†x(−p)

)
=

(
eiφ(p) 0

0 −e−iφ(−p)

)
(S40)

This acts on the BdG Hamiltonian according to:

M̃−1
x H(BdG)

ητ (p)M̃x = H(BdG)
ητ (p̄) (S41)

Here the relative sign between the two non-vanishing
components of M̃ is determined by how the gap functions

transform under the mirror symmetry. In the regime of
interest, where the SC gap is odd under px → −px, the
appropriate choice is minus.

To understand the effects of symmetry, we follow the
approach of Ref. [43]: specifically, we will show that in
the low-energy theory obtained by linearizing the model
near the nodes, there are no symmetry-allowed mass
terms. To see this, we first linearize the Hamiltonian in
the region b > αRPF around the pair of nodes at px = 0.
This gives a 4× 4 low-energy effective Hamiltonian, with
a new index L,R to keep track of the two nodes. We
define τµ to be the Pauli matrices acting on the L,R in-
dices, while ςµ are Pauli matrices acting on the 2 indices
of the BdG spinors (i.e. on the particle-hole indices).
The linearized Hamiltonian has the form

H = δpyς
z ⊗ τz + pxς

x ⊗ τ0 (S42)

where δpy = py − p(node)
y .

In this basis the particle-hole symmetry, which inter-
changes the two nodes, acts via C = ςx ⊗ τxK. Near the
nodes, which lie on the mirror plane (i.e. at px = 0), the

mirror symmetry has the form M̃x(p) = ςz. Since the
mirror symmetry acts in the same way on both nodes in
that case, in our linearized theory mirror symmetry acts
via

M̃x = ςz ⊗ τ0 . (S43)

Note that Eq. (S40) implies that the action of M̃x on
the mirror plane changes discontinuously at b = αRpF ;
for b < αRpF , M̃x is proportional to the identity matrix
(times τz, in terms of the 4× 4 matrices relevant to our
effective low-energy theory).

In order to show that the nodes for b > αRpF are
protected, we now consider what happens when we add
a generic symmetry-allowed term h(δpy, px)ςµ⊗τν to the
Hamiltonian. Note that we do not wish to allow terms
that couple the two nodes, as these break translational
symmetry; thus we require ν = 0 or z. Recall that the
symmetries are

C−1H(δpy, px)C = −H(−δpy,−px)

M̃−1
x H(δpy, px)M̃x = H(δpy,−px) . (S44)

Thus h(−δpy,−px) = ±h(δpy, px), where C−1ςµ⊗ τνC =
∓ςµ ⊗ τν . Similarly h(δpy,−px) = ±h(δpy, px), where

M̃−1
x ςµ ⊗ τνM̃x = ±ςµ ⊗ τν . To gap out the nodes we

must have h(0, 0) 6= 0; thus we need plus signs in both
cases. Hence ςµ ⊗ τν anti-commutes with µx ⊗ τxK and
commutes with ςz ⊗ τ0.

For b > αRpF , to leading order in momenta about
the nodes the only symmetry-allowed terms are mς0⊗τz
and mςz ⊗ τ0. The second term, which plays the role of
a chemical potential shift at each node, does not lift the
nodes; rather it shifts them in opposite directions along
the y axis, from py = ±pF to py = ±(pF +m).

The mς0⊗τz term, on the other hand, shifts the nodes
in opposite directions in energy by an amount |m|. Taken
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literally, this changes the nodes to small BdG Fermi sur-
faces at the Fermi energy. However, this is deceptive: in
fact, the term mς0 ⊗ τz shifts the normal state FS, de-
fined as the contour of zero normal state energy (given by
the upper left element of both L and R blocks of H) by
m in the BZ. To see this, observe that at px = 0, the FS
at both nodes is determined by δpy +m = 0, and there-
fore must shift for non-zero m. Since pairing is between
electrons on the FS, the Cooper pair in this case acquires
a finite momentum m. As a result, the Nambu spinors

should properly be redefined as (cp+mŷ, c
†
−p+mŷ). This

transformation applied to (85) can be seen to amount
precisely to adding −mς0 ⊗ τz, thus canceling the of-
fending term and bringing the nodes back to zero energy.
After correctly accounting for this finite-momentum pair-
ing, the edge modes remain flat in the ground state.

Tight Binding Model for Edge Mode Spectrum

To produce the plot in Fig. 4 we used a tight binding
model defined on the triangular lattice, which we describe
in more detail here. The Hamiltonian has the general
form

H = H0 +HZ +HSC (S45)

The first term describes the normal state band structure
in the presence of SOC; the second-term is the Zeeman
coupling due to in-plane magnetic field; and the last term
represents the superconducting pairing gap. For simplic-
ity we use a tight-binding model that only includes the
η = Γ pocket Fermi surface, since the ±K pockets are
unimportant for the crystalline nodal topological super-
conductor.

We describe our model in terms of the creation oper-

ators d†i,α, where α =↑, ↓ is a spin index, and i is a site
index. We have

H0 =
∑
iα

µ d†iαdiα +
∑
〈ij〉α

t d†iαdjα

+
∑
〈ij〉αβ

[
4iλνijσ

z
αβ +

iαR
3

ẑ · (σ × aij)αβ

]
d†iαdjβ

HZ =
∑
iαβ

(b · σ)αβ d
†
iαdiβ (S46)

HSC =
1

2

∑
ijαβ

[∆]
ij
αβ d

†
iαd
†
jβ + h.c.

where aij ∈ {±a1,±a2,±a3} is the vector from site i to
site j, and νij = 1 (−1) if the vector is a1, −a2, a3 (
−a1, a2, −a3) . For our triangular lattice, a1 = (a, 0)

and a2 = a
2 (1,
√

3), a3 = a2 − a1 = a
2 (−1,

√
3). We

consider the singlet-instability regime, in the crystalline
nodal topological phase where b� αRpF . In this region
we can take

∆ij = ∆0νij (σx cosϑ+ σy sinϑ) iσy (S47)

where ϑ is the direction of the magnetic field. The nu-
merical coefficients are chosen to match the k · p Hamil-
tonian (including the value of pF ). The specific values
used in the Figure are listed at the end of this section.

Our cylinder is created by taking periodic boundary
conditions in the vertical y direction, and open zig-zag
boundary conditions along the x direction. To produce
the plot, we Fourier transform in the y direction:

dRiα =
1√
N

∑
py

dRixpyαe
−ipyRiy ≡ 1√

N

∑
py

dipyαe
−ipyRiy

(S48)
where Ri = (Rix, Riy). Note that i labels the x coordi-
nates of the sites which go in increments of a/2, while the
period along the y axis is actually doubled since identical
sites are now separated by 2a2, resulting in the folding
of the 1D Brillouin zone (which has a period of 2π√

3a
).

The resulting BdG Hamiltonian on the cylinder can be
expressed

HBdG =
1

2

∑
ij,py

Ψ†i,pyH
ij(py)Ψj,−py (S49)

where Ψi,py =
(
di,py↑, di,py↓, d

†
i,−py↑, d

†
i,−py↓

)
and

Hij(py) =

(
Hijkin(py) ∆ij(py)

−
(
∆ij(−py)

)∗ − (HTkin(−py)
)ji ) (S50)

where we have defined

H0 +HZ =
∑
ijαβ

(Hkin(py))
ij
αβ d

†
ipyα

djpyβ (S51)

In the presence of both Rashba SOC and in-plane mag-
netic field, the Fermi surfaces are shifted in the direction
perpendicular to the magnetic field, so the correct SC
ground state has a finite center of mass momentum. To
account for that, we need to shift py → p̃y = py + P in
the equations above. Since the shift is opposite on inner
and outer FS’s, P is an even function of py. The resulting
Hamiltonian is

H =
1

2

∑
ij,py

Ψ†i,py+P (py)H
ij(py)Ψj,−py+P (py) (S52)

with

Hij(py) =

(
Hijkin(py + P (py)) ∆ij(py)

−
(
∆ij(−py)

)∗ −
(
HTkin(−py + P (py))

)ji )
(S53)

where the gap has the same form as in Eq. (S47) , but
the spinor Ψ is now given by:

Ψ†i,py =


di,py+P (py),↑
di,py+P (py),↓
d†i,−py+P (py),↑
d†i,−py+P (py),↓

 . (S54)
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The resulting spectrum is plotted in Fig. 4 with the num-
ber of sites along the non-periodic x direction N = 200
(which corresponds to 100 unit cells due to period dou-
bling), t = 1, µ = 0, b = 1, λ = 0.2, αR = 0.1, and ϑ = 0
corresponding to the Γ−K direction in the Brillouin zone

for which a pair of nodes appears. To account for the
shifts in that case we take P (py) = 0.07+0.025 cos

√
3py.

Note that p̃(py) = py + P (py) is a monotonic function of
py in that case.
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