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ABSTRACT

Signal reconstruction over graphs arises naturally in diverse
science and engineering applications. Existing methods em-
ploy either parametric or nonparametric approaches based
on graph kernels. Although the former are adequate when
the signals of interest adhere to postulated models, their
performance degrades rapidly under model mismatch. Non-
parametric alternatives on the other hand are flexible, but not
as parsimonious in capturing prior information. Targeting a
hybrid “sweet spot,” the present contribution advocates an
efficient semi-parametric approach capable of incorporating
known signal structure without sacrificing the flexibility of
the overall model. Numerical tests on synthetic as well as
real data corroborate that the novel method leads to markedly
improved signal reconstruction performance.

Index Terms— graph kernel, graph signal processing,
semi-parametric inference

1. INTRODUCTION

Numerous applications arising in diverse disciplines involve
inference over networks. Modeling nodal attributes as func-
tions (or signals) that take values over the vertices of the un-
derlying graph, allows the associated inference tasks to bene-
fit from leveraging node dependencies captured by the graph
topology. This approach has been shown to yield promising
results in several application areas [1, 2].

In many real settings, often one needs to work with lim-
ited nodal observations due to inherent restrictions particular
to the inference task at hand. In social networks, for example,
individuals may be reluctant to share personal information;
in sensor networks the nodes may report observations spo-
radically in order to save energy; in brain networks acquiring
nodal samples may involve invasive procedures (e.g. elec-
trocorticography). In this context, a frequently encountered
challenge that has received growing attention recently [1],
pertains to reconstructing the graph signal on unobserved ver-
tices, given its values over a limited subset of observed ones.

Traditional approaches – falling under the umbrella term
of signal processing on graphs [1,3] – either adopt a bandlim-
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ited model, which postulates that the signal of interest lies in a
B-dimensional subspace related to the graph topology [4–6],
or they assume that the signal can be sparsely represented by
an overcomplete dictionary [7]. Nonparametric techniques
rely on graph kernels [8, 9] which allow them to also accom-
modate nonbandlimited signals, upon selecting an appropriate
kernel [9]. The performance of algorithms in the first category
is limited by how well the signals actually adhere to the se-
lected model. Nonparametric models on the other hand, offer
flexibility and robustness but they cannot readily incorporate
information available a priori – a fact that could limit their
performance especially in face of scarce nodal samples.

To address the aforementioned limitations, this paper de-
velops a semi-parametric approach whereby the signal of in-
terest is modeled as the superposition of a parametric and a
nonparametric component. While the former leverages side
information, the latter accounts for deviations from the para-
metric part, and can also promote smoothness using graph
kernels. We introduce two efficient estimators with comple-
mentary strengths, and adopt a dimensionality reduction tech-
nique to ensure affordable complexity in large-scale applica-
tions. Finally, we perform tests using both synthetic and real
data, to corroborate the merits of our approach for reliable
reconstruction even based on a minimal number of samples.

Notation: Scalars are denoted using lowercase, column
vectors by bold lowercase, and matrices by bold uppercase
fonts. Superscripts T and † respectively denote transpose and
pseudo-inverse; IN the N ×N identity matrix; 1N the N × 1
all-one vector; and diag {x} corresponds to a diagonal matrix
with the entries of x on its diagonal. Finally, if A is a matrix
and x a vector, then ||x||2A := xTA−1x and ||x||22 := xTx.

2. MODELING AND PROBLEM FORMULATION

Consider an undirected graph G := (V,A), where V :=
{v1, . . . , vN} is the vertex set, and A is the symmetric entry-
wise nonegative N × N adjacency matrix, whose (n, n′)-
th entry denotes the edge weight between vertices vn and
vn′ . We assume that G has no self-loops, meaning (A)n,n =
0, ∀vn ∈ V . The Laplacian matrix of G is L := D − A,
with (D)n,n :=

∑N
m=1(A)n,m and (D)n,n′ := 0 if n 6= n′;

matrix L is known to be positive semidefinite [8].
A real-valued signal on a graph is a function f : V → R



that can be compactly represented by the N × 1 vector f :=
[f(v1), . . . , f(vN )]T . At each sampled node vns , a measure-
ment ys = f(vns

) + es, s = 1, . . . , S is collected, where
{es}Ss=1 represents noise, and 1 ≤ n1 < . . . < nS ≤ N
are the indices of the observed vertices. Upon defining e :=
[e1, . . . , eS ]T , and y := [y1, . . . , yS ]T it follows that

y = Sf + e (1)

where S is an S × N sampling matrix with all zeros except
for the entries (s, ns), s = 1, . . . , S, which contain ones.

Function f is modeled as the superposition f = fP + fNP,
or, in vector form

f = fP + fNP (2)

where fP := [fP(v1), . . . , fP(vN )]T , and fNP := [fNP(v1),

. . . , fNP(vN )]T . The parametric term fP(v) :=
∑M

m=1 βmbm(v)
captures the known signal structure via the basis B :=
{bm}Mm=1, while the nonparametric term fNP belongs to a
reproducing kernel Hilbert space (RKHS)H, which accounts
for deviations from the span of B. The goal of this paper is
efficient and reliable estimation of f given y, S, B,H and A.

Remark 1 Decomposing f as in (2) is well motivated in
certain applications. Consider for instance an employment-
oriented social network like LinkedIn, and let the goal be
to estimate the salaries of all users given information about
the salaries of a few. Clearly, besides network connections,
exploiting available information regarding the users’ edu-
cation level and work experience could benefit the recon-
struction task. Another application where this decomposition
fits nicely, is in recommender systems. Inferring preference
scores for every item, given the users’ feedback about partic-
ular items, could be cast as a signal reconstruction problem
over the item correlation graph. Exploiting side information
about the items, is known to alleviate limitations of pure
collaborative filtering techniques, leading to considerably im-
proved recommendation performance [10, 11]. In our setup,
the item attributes can be used to create a parametric base
capturing the user’s coarse level preferences.

3. SEMI-PARAMETRIC RECONSTRUCTION

This section introduces our semi-parametric approach. Specif-
ically, Sec. 3.1 reviews the RKHS for graph functions and
Sec. 3.2 presents two semi-parametric estimators.

3.1. Reproducing kernel Hilbert spaces on graphs

An RKHS is a space of functions h : V → R expressed in
terms of a kernel function κ : V × V → R as

H :=

{
h : h(v) =

N∑
n=1

αnκ(v, vn), αn ∈ R

}
(3)

Kernel name Function Parameters

Diffusion [8, 14] r(λ) = exp{σ2λ/2} σ2

Laplacian [1, 8] r(λ) = 1 + σ2λ σ2

Bandlimited [9] r(λ) =

{
1/β, λ ≤ λmax

β, otherwise
β > 0, λmax

Table 1: Common spectral weight functions.

where κ(vn, vn′) captures the similarity between vertices
vn and vn′ [8]. Upon defining the N × N positive defi-
nite matrix with entries (K)n,n′ := κ(vn, vn′), and h :=
[h(v1), h(v2), . . . , h(vN )], we can write

h = Kα (4)

where α := [α1, α2, . . . , αN ]T . The RKHS norm of a func-
tion h is given by ‖h‖2H :=

∑N
n=1

∑N
n′=1 αnαn′κ(vn, vn′)

or in vector form by

‖h‖2H = αTKα (5)

and is usually employed as a regularization term to control
overfitting [8, 9, 12].

Laplacian kernels have been widely used [8, 9, 13, 14]
to promote smoothness with respect to the underlying graph
topology, by penalizing functions that exhibit pronounced
variations among neighboring vertices. For a given Lapla-
cian matrix with eigendecomposition L = U diag{λ}UT, a
family of graph kernels is defined as [8]

K := r−1(L) := U diag{r−1(λ)}UT (6)

where r :R→R+ is chosen to be a monotonically increasing
function. Table 1 summarizes common choices of r(·) which
can be selected to promote a certain structure in the so-called
graph Fourier transform of h [1, 8, 9].

3.2. Kernel-based semi-parametric reconstruction

Since fNP ∈ H, vector fNP can be represented as in (4). By
defining β := [β1, . . . , βM ]T , and the N ×M matrix B with
entries (B)n,m := bm(vn), the parametric term can be written
in vector form as fP := Bβ. The semi-parametric estimates
can be found as the solution of the following optimization
problem

{α̂, β̂} = arg min
α,β

1

S

S∑
s=1

L(ys, f(vns
)) + µ‖fNP‖2H (7)

s.t. f = fP + fNP

fP = Bβ

fNP = Kα



where the fitting loss L quantifies the deviation of f from
the data, and µ > 0 is the regularization scalar that controls
overfitting the nonparametric term. Using (7), we can express
our semi-parametric estimate as f̂ = Bβ̂ + Kα̂.

Solving (7) entails minimization over N + M variables.
Clearly, when dealing with large-scale graphs this could lead
to prohibitively large computational cost. To ensure applica-
bility in big-data scenaria we leverage the dimensionality re-
duction effected through the semi-parametric version of the
representer theorem [12, 15], which establishes that

f̂ = Bβ̂ + KST ˆ̄α (8)

where ˆ̄α := [ ˆ̄α1, . . . , ˆ̄αS ]T . Estimates ˆ̄α, β̂ are found solving
the optimization problem

{ ˆ̄α, β̂} = arg min
ᾱ,β

1

S

S∑
s=1

L(ys, f(vns)) + µ‖fNP‖2H (9)

s.t. f = fP + fNP

fP = Bβ

fNP = KST ᾱ

where ᾱ := [ᾱ1, . . . , ᾱS ]T . The RKHS norm in (9) is ex-
pressed as ‖fNP‖2H = ᾱT K̄ᾱ, with K̄ := SKST . Relative to
(7) the number of optimization variables in (9) is reduced to
the more affordable S +M , with S � N .

We will consider two loss functions with complementary
benefits: the square loss and the ε-insensitive loss. The square
loss function is

L(ys, f(vns)) := ‖ys − f(vns))‖22 (10)

and (9) then admits the following closed-form solution

ˆ̄α = (PK̄ + µIS)−1Py (11a)

β̂ = (B̄T B̄)−1B̄T (y − K̄ ˆ̄α) (11b)

where B̄ := SB and P := IS − B̄(B̄T B̄)−1B̄T . The com-
plexity of (11) is O(S3 +M3).

The ε-insensitive loss function is given by

L(ys, f(vns
)) = max(0, |ys − f(vns

)| − ε) (12)

where ε is tuned, e.g. via cross-validation, to minimize the
generalization error and has well-documented merits in signal
estimation from quantized data [16]. Substituting (12) into
(9) yields a convex non-smooth quadratic problem that can
be solved efficiently for ᾱ and β using e.g. interior-point
methods [15].

4. NUMERICAL TESTS

This section describes tests on synthetic and real graph func-
tions to illustrate the effective reconstruction performance of
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Fig. 1: NMSE of the synthetic signal estimates. (µ = 5 ×
10−4, σ = 5× 10−4, SNRe = 5dB).

our semi-parametric graph kernel estimators, SP-GK and SP-
GK(ε) resulting from using (10) and (12) in (9) respectively.

Our approach is compared against the parametric (P) that
considers only the parametric term in (2); the nonparametric
(NP) [8,14] that considers only the nonparametric term in (2);
and the least-squares estimators (LS) from [4, 17], which as-
sume a bandlimited model with bandwidth B. For all the
experiments we use the diffusion kernel (cf. Table 1) with
parameter σ.

We assess the performance of the proposed estimators via
Monte Carlo simulation by comparing the normalized mean-
square error (NMSE)

NMSE = E
[
‖f̂ − f‖2

‖f‖2

]
(13)

averaged over choices of sample indices {ns}Ss=1 and, for
synthetic data experiments, also over noise and signal real-
izations.

4.1. Synthetic signals

An Erdős-Rènyi graph with probability of edge presence 0.6
and N = 200 nodes was generated, and f was formed by
superimposing a bandlimited [4,17] with a piecewise constant
signal [18]; that is

f =

10∑
i=1

γiui +

6∑
i=1

δi1Vc (14)

where {γi}10
i=1 and {δi}6i=1 are standardized Gaussian dis-

tributed, {ui}10
i=1 are the eigenvectors associated with the

10 smallest eigenvalues of the Laplacian matrix, {Vi}6i=1

are the vertex sets of 6 clusters obtained via spectral clus-
tering [19], and 1Vi is the indicator vector with entries
(1Vi)n := 1 if vn ∈ Vi, and 0 otherwise. The parametric
basis B = {1Vi}6i=1 was used by the estimators capturing the
prior knowledge, and S vertices were sampled uniformly at
random.
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Fig. 2: NMSE of the synthetic signal estimates. (µ = 5 ×
10−4, σ = 5× 10−4, ε = 10−4, and SNRo = −5dB).

In the first experiment, white Gaussian noise es of vari-
ance σ2

e is added to each sample fs to yield signal-to-noise
ratio SNRe := ‖f‖22/(Nσ2

e). Fig. 1 reports the NMSE of all
competing methods and showcases the benefits of our semi-
parametric estimator. Observe that the limited flexibility of
the parametric approaches, LS and P, affects their ability to
capture the true signal structure. The nonparametric approach
(NP) is performing better, but only when the amount of avail-
able samples increases. Both our semi-parametric estimators
were found to outperform all competing approaches, exhibit-
ing reliable reconstruction even with few samples.

Note here that since the performance of SP-GK(ε) and SP-
GK was very close, we have chosen to include only SP-GK
in Fig. 1, to avoid “clotting” the plot. To illustrate the differ-
ences of our semi-parametric estimators, we conduct a second
experiment which compares the performance of SP-GK and
SP-GK(ε) in the presence of outlying noise. Each sample fs
is contaminated with Gaussian noise os of large variance σ2

o

with probability p = 0.1. Fig. 2 demonstrates the robust-
ness of SP-GK(ε) which is attributed to the ε−insensitive loss
function (12).

4.2. Real signals

The second dataset is provided by the National Climatic
Data Center [20], and comprises temperature measurements
at N = 109 stations across the continental United States in
2010. The geographical coordinates of the measuring stations
have been used to construct a graph

(A)n,n′ =
exp {−d2

n,n′}√∑
j∈Nk

n
exp {−d2

n,j}
∑

l∈Nk
n′

exp {−d2
n′,l}

(15)

where N k
n is the set containing the k = 7 nearest neighbors

of station n, and dn,n′ is the geographical distance between
stations n and n′. The neighborhoods are defined based on
dn,n′ , which is justified since geographically close stations
tend to measure similar temperature values. To illustrate the
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Fig. 3: NMSE of the mean temperature estimates over 2010.
(µ = 5× 10−5, σ = 1.3, and C = 4).

benefits of leveraging side information, we cluster the stations
into C vertex sets {Vc}Cc=1 according to their altitude, and we
construct B using the indicator vectors {1Vc}Cc=1. We sample
the temperatures at S stations, chosen uniformly at random,
and we reconstruct the signal across all N nodes.

Fig. 3 reports the performance of the different graph infer-
ence methods, and illustrates the advantage of the proposed
approach. SP-GK1 leverages the altitude information and
achieves NMSE≤ 10−2 with as few as S = 35 samples,
whereas NP requires at least S = 85 for the same NMSE.
Moreover, we observe that the performance of the pure para-
metric method LS – which assumes a bandlimited model –
does not improve after a certain number of samples. This
was expected since the actual signal does not adhere to the
modeling assumptions.

5. CONCLUSION

In this work, we introduced a novel semi-parametric method
for reconstruction of functions over graphs. We decompose
the graph function into a nonparametric component that pro-
motes smoothness via graph kernels, and a parametric compo-
nent that represents prior information via a known basis. We
derive two estimators corresponding to different loss func-
tions, the square loss that admits closed form solution, and the
ε-insensitive loss that promotes robustness, and by employ-
ing the representer theorem we achieve affordable complex-
ity. Numerical tests on synthetic and real data-sets demon-
strate the competitive performance of SP-GK against existing
alternatives.

Interesting future directions include a multi-kernel exten-
sion, a data-driven approach for selecting a suitable kernel
function, as well as the application of the semi-parametric ap-
proach to real-world scenarios.

1SP-GK(ε) performed similarly to SP-GK and was not included in the
plot.
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