A dynamic end cap technique for sound computation using the Ffowcs Williams and Hawkings equations

Zane Nitzkorski, Krishnan Mahesh

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

A dynamic end cap methodology is proposed to account for spurious contributions to the far-field sound within the context of the Ffowcs-Williams and Hawkings (FW-H) acoustic analogy. The quadrupole source terms are correlated over multiple planes to obtain a convection velocity which is then used to determine a corrective convective flux at the FW-H porous surface. The proposed approach is first demonstrated for a convecting potential vortex. It is then evaluated by computing the sound emitted by flow over circular cylinders at Reynolds number of 150, 10 000, and 89 000, respectively. The low Re cylinder is used to validate against direct numerical simulation (DNS) and demonstrate insensitivity to end plane location and spacing, the effect of dynamic convection velocity and to compare to commonly used end cap corrections. The Re 100?00 cylinder is used to validate at turbulent Reynolds numbers against other simulations. Finally the Re 89 000 simulations are used to compare to experiment. The proposed approach demonstrates better performance than other commonly used approaches with the added benefit of computational efficiency and the ability to query independent volumes.

Original languageEnglish (US)
Article number1.4900876
JournalPhysics of Fluids
Volume26
Issue number11
DOIs
StatePublished - Nov 10 2014

Bibliographical note

Publisher Copyright:
© 2014 AIP Publishing LLC.

Fingerprint

Dive into the research topics of 'A dynamic end cap technique for sound computation using the Ffowcs Williams and Hawkings equations'. Together they form a unique fingerprint.

Cite this