A hybrid optimal control strategy for a smart prosthetic hand

Cheng Hung Chen, D. Subbaram Naidu, Alba Perez-Gracia, Marco P. Schoen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

This paper presents a hybrid of a soft computing or control technique of adaptive neuro-fuzzy inference system (ANFIS) and a hard computing or control technique of the hybrid finite-time linear quadratic optimal control for a two-fingered (thumb and index) prosthetic hand. In particular, the ANFIS is used for inverse kinematics, and the optimal control is used to minimize tracking error utilizing feedback linearized dynamics. The simulations of this hybrid controller, when compared with the proportional-integral-derivative (PID) controller showed enhanced performance. Work is underway to extend this methodology to a five-fingered, three-dimensional prosthetic hand.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages1001-1008
Number of pages8
EditionPART B
ISBN (Print)9780791848920
DOIs
StatePublished - 2010
Event2009 ASME Dynamic Systems and Control Conference, DSCC2009 - Hollywood, CA, United States
Duration: Oct 12 2009Oct 14 2009

Publication series

NameProceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
NumberPART B

Other

Other2009 ASME Dynamic Systems and Control Conference, DSCC2009
Country/TerritoryUnited States
CityHollywood, CA
Period10/12/0910/14/09

Fingerprint

Dive into the research topics of 'A hybrid optimal control strategy for a smart prosthetic hand'. Together they form a unique fingerprint.

Cite this