A PSF-based approach to Biplane calibration in 3D super-resolution microscopy

Hagai Kirshner, Thomas Pengo, Nicolas Olivier, Daniel Sage, Suliana Manley, Michael Unser

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Super-resolution localization microscopy methods such as PALM and STORM have been shown to provide imaging with resolutions up to a few tens of nanometers while using relatively simple setups. Biplane PALM has extended the PALM technique to three-dimensions, by simultaneously using two imaging planes, with different focal depths. A key aspect in achieving good axial localization results is the alignment of the two planes. Currently available approaches assume that misaligned planes only result in scaling and rotation of the PSF pattern. We show in this work that this does not necessarily hold true, especially in the presence of refractive index mismatch between the different optical layers. Instead, we suggest a calibration algorithm that relies on a realistic PSF model and finds the affine transform that relates the two planes with respect to a point source in the object domain. Our calibration algorithm also determines the defocus distance between the planes.

Original languageEnglish (US)
Title of host publication2012 9th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI 2012 - Proceedings
Pages1232-1235
Number of pages4
DOIs
StatePublished - 2012
Externally publishedYes
Event2012 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2012 - Barcelona, Spain
Duration: May 2 2012May 5 2012

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Other

Other2012 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2012
Country/TerritorySpain
CityBarcelona
Period5/2/125/5/12

Keywords

  • 3D particle localization
  • point spread function modeling
  • super-resolution fluorescence microscopy

Fingerprint

Dive into the research topics of 'A PSF-based approach to Biplane calibration in 3D super-resolution microscopy'. Together they form a unique fingerprint.

Cite this