An extended kalman filter for frequent local and infrequent global sensor data fusion

Stergios I. Roumeliotis, George A. Bekey

Research output: Contribution to journalConference articlepeer-review

39 Scopus citations

Abstract

In this paper we compare the performance of a dead-reckoning system for robot navigation to a system using an Extended Kalman Filter (EKF). Dead-reckoning systems are able to approximate position and orientation by feeding data (provided usually by local sensors) to the kinematic model of the vehicle. These systems are subject to many different sources of error. EKFs have the ability to combine the same information and compensate for most of these errors to yield a better estimate. Our simulation results using a simplified kinematic model of Rocky 7 (an experimental rover used in the Mars exploration program at Jet Propulsion Laboratory (JPL)) show that an improvement in performance up to 40% (position error) can be achieved. The local sensors used are: wheel encoders, steering angle potentiometer and gyroscope. Involvement of global sensor measurements can drastically increase the accuracy of the estimate. The lack of GPS or magnetic field on Mars narrows our choices for global localization. Landmarks, such as the sun can be used as natural beacons (reference point for absolute measurements). A sun sensor (SS) that measures the absolute orientation of the rover has been built by Lockheed Martin and now is part of the sensor suite of Rocky 7. The SS measurement is crucial for the estimation filter and we show that the accuracy of the estimation decreases exponentially as the frequency of the SS data fed to the EKF decreases.

Original languageEnglish (US)
Pages (from-to)11-22
Number of pages12
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3209
DOIs
StatePublished - Dec 1 1997
EventSensor Fusion and Decentralized Control in Autonomous Robotic Systems - Pittsburgh, PA, United States
Duration: Oct 14 1997Oct 14 1997

Keywords

  • Extended kalman filter
  • Robot localization
  • Sun sensor

Fingerprint

Dive into the research topics of 'An extended kalman filter for frequent local and infrequent global sensor data fusion'. Together they form a unique fingerprint.

Cite this