Applications of microtomography to multiscale system dynamics: Visualisation, characterisation and high performance computation

Jie Liu, Klaus Regenauer-Lieb, Chris Hines, Shuxia Zhang, Paul Bourke, Florian Fusseis, David A. Yuen

Research output: Chapter in Book/Report/Conference proceedingChapter

4 Scopus citations

Abstract

We characterise microstructure over multiple spatial scales for different samples utilising a workflow that combines microtomography with computational analysis. High-resolution microtomographic data are acquired by desktop and synchrotron X-ray tomography. In some recent 4-dimensional experiments, microstructures that are evolving with time are produced and documented in situ.The microstructures in our materials are characterised by a numerical routine based on percolation theory. In a pre-processing step, the material of interest is segmented from the tomographic data. The analytical approach can be applied to any feature that can be segmented. We characterise a microstructure by its volume fraction, the specific surface area, the connectivity (percolation) and the anisotropy of the microstructure. Furthermore, properties such as permeability and elastic parameters can be calculated. By using the moving window method, scale-dependent properties are obtained and the size of representative volume element (RVE) is determined. The fractal dimension of particular microstructural configurations is estimated by relating the number of particular features to their normalized size. The critical exponent of correlation length can be derived from the probability of percolation of the microstructure. With these two independent parameters, all other critical exponents are determined leading to scaling laws for the specific microstructure. These are used to upscale the microstructural model and properties. Visualisation is one of the essential tools when performing characterisation. The high performance computations behind these characterisations include: (1) the Hoshen-Kolpeman algorithm for labelling materials in large datasets; (2) the OpenMP parallelisation of the moving window method and the performance of stochastic analysis (up to 6403 voxels); (3) the MPI parallelisation of the moving window method and the performance of stochastic analysis, which enables the computation to be run on distributed memory machines and employ massive parallelism; (4) the parallelised MPI version of the Hoshen-Kolpeman algorithm and the moving window method, which allows datasets of theoretically unlimited size to be analysed.

Original languageEnglish (US)
Title of host publicationLecture Notes in Earth System Sciences
PublisherSpringer International Publishing
Pages653-674
Number of pages22
Edition9783642164040
DOIs
StatePublished - 2013

Publication series

NameLecture Notes in Earth System Sciences
Number9783642164040
Volume0
ISSN (Print)2193-8571
ISSN (Electronic)2193-858X

Bibliographical note

Funding Information:
Acknowledgments This project was funded through the Premier’s Fellowship Program of the Western Australian Government, CSIRO OCE Postdoctoral Program, and the Geothermal Centre of Excellence of Western Australia. We are grateful to iVEC for technical support and access to high performance computing resources.

Keywords

  • Hoshen-Kolpeman algorithm
  • MPI parallelisation
  • Microtomography
  • Multi-scale system
  • OpenMP parallelisation
  • Percolation theory
  • Quantitative analysis

Fingerprint Dive into the research topics of 'Applications of microtomography to multiscale system dynamics: Visualisation, characterisation and high performance computation'. Together they form a unique fingerprint.

Cite this