Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene

Hyobin Yoo, Rebecca Engelke, Stephen Carr, Shiang Fang, Kuan Zhang, Paul Cazeaux, Suk Hyun Sung, Robert Hovden, Adam W. Tsen, Takashi Taniguchi, Kenji Watanabe, Gyu Chul Yi, Miyoung Kim, Mitchell Luskin, Ellad B. Tadmor, Efthimios Kaxiras, Philip Kim

Research output: Contribution to journalArticlepeer-review

437 Scopus citations

Abstract

Control of the interlayer twist angle in two-dimensional van der Waals (vdW) heterostructures enables one to engineer a quasiperiodic moiré superlattice of tunable length scale1–8. In twisted bilayer graphene, the simple moiré superlattice band description suggests that the electronic bandwidth can be tuned to be comparable to the vdW interlayer interaction at a ‘magic angle’9, exhibiting strongly correlated behaviour. However, the vdW interlayer interaction can also cause significant structural reconstruction at the interface by favouring interlayer commensurability, which competes with the intralayer lattice distortion10–16. Here we report atomic-scale reconstruction in twisted bilayer graphene and its effect on the electronic structure. We find a gradual transition from an incommensurate moiré structure to an array of commensurate domains with soliton boundaries as we decrease the twist angle across the characteristic crossover angle, θc ≈ 1°. In the solitonic regime (θ < θc) where the atomic and electronic reconstruction become significant, a simple moiré band description breaks down and the secondary Dirac bands appear. On applying a transverse electric field, we observe electronic transport along the network of one-dimensional topological channels that surround the alternating triangular gapped domains. Atomic and electronic reconstruction at the vdW interface provide a new pathway to engineer the system with continuous tunability.

Original languageEnglish (US)
Pages (from-to)448-453
Number of pages6
JournalNature Materials
Volume18
Issue number5
DOIs
StatePublished - May 1 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene'. Together they form a unique fingerprint.

Cite this