Autonomous altitude estimation of a UAV using a single onboard camera

Anoop Cherian, Jon Andersh, Vassilios Morellas, Nikolaos Papanikolopoulos, Bernard Mettler

Research output: Chapter in Book/Report/Conference proceedingConference contribution

49 Scopus citations

Abstract

Autonomous estimation of the altitude of an Unmanned Aerial Vehicle (UAV) is extremely important when dealing with flight maneuvers like landing, steady flight, etc. Vision based techniques for solving this problem have been underutilized. In this paper, we propose a new algorithm to estimate the altitude of a UAV from top-down aerial images taken from a single on-board camera. We use a semi-supervised machine learning approach to solve the problem. The basic idea of our technique is to learn the mapping between the texture information contained in an image to a possible altitude value. We learn an over complete sparse basis set from a corpus of unlabeled images capturing the texture variations. This is followed by regression of this basis set against a training set of altitudes. Finally, a spatio-temporal Markov Random Field is modeled over the altitudes in test images, which is maximized over the posterior distribution using the MAP estimate by solving a quadratic optimization problem with L1 regularity constraints. The method is evaluated in a laboratory setting with a real helicopter and is found to provide promising results with sufficiently fast turnaround time.

Original languageEnglish (US)
Title of host publication2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Pages3900-3905
Number of pages6
DOIs
StatePublished - Dec 11 2009
Event2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009 - St. Louis, MO, United States
Duration: Oct 11 2009Oct 15 2009

Publication series

Name2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009

Other

Other2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Country/TerritoryUnited States
CitySt. Louis, MO
Period10/11/0910/15/09

Fingerprint

Dive into the research topics of 'Autonomous altitude estimation of a UAV using a single onboard camera'. Together they form a unique fingerprint.

Cite this