Block Alternating Optimization for Non-convex Min-max Problems: Algorithms and Applications in Signal Processing and Communications

Songtao Lu, Ioannis Tsaknakis, Mingyi Hong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The min-max problem, also known as the saddle point problem, can be used to formulate a wide range of applications in signal processing and wireless communications. However, existing optimization theory and methods, which mostly deal with problems with certain convex-concave structure, are not applicable for the aforementioned applications, which oftentimes involve non-convexity. In this work, we consider a general block-wise one-sided non-convex min-max problem, in which the minimization problem consists of multiple blocks and is non-convex, while the maximization problem is (strongly) concave. We propose two simple algorithms, which alternatingly perform one gradient descent-type step for each minimization block and one gradient ascent-type step for the maximization problem. For the first time, we show that such simple alternating min-max algorithms converge to first-order stationary solutions. We conduct numerical tests on a robust learning problem, and a wireless communication problem in the presence of jammers, to validate the efficiency of the proposed algorithms.

Original languageEnglish (US)
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4754-4758
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: May 12 2019May 17 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
CountryUnited Kingdom
CityBrighton
Period5/12/195/17/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.

Fingerprint Dive into the research topics of 'Block Alternating Optimization for Non-convex Min-max Problems: Algorithms and Applications in Signal Processing and Communications'. Together they form a unique fingerprint.

Cite this