Chronomes, time structures, for chronobioengineering for 'A full life'

Germaine G Cornelissen-Guillaume, Franz Halberg, Othild Schwartzkopff, Patrick Delmore, George Katinas, David Hunter, Brunetto Tarquini, Roberto Tarquini, Federico Perfetto, Yoshihiko Watanabe, Kuniaki Otsuka

Research output: Contribution to journalReview articlepeer-review

93 Scopus citations

Abstract

Week-long or longer monitoring of blood pressure and heart rate, coupled to time-structure analyses, can help detect disease-risk elevations, as a warning of the need for a preventive prehabilitation. Within the normal range of physiologic variation, computer methods quantify time structures, or chronomes, that can serve as reference values. The major applied purpose for mapping chronomes is the detection of disease-risk syndromes such as blood pressure 'overswinging' and heart rate 'underswinging.' Too much blood pressure variability (circadian hyperamplitude tension; CHAT), is a risk factor for vascular disease. Other risk syndromes are chronome alterations of heart rate variability (CAHRVs), consisting of a loss of 'jitter,' i.e., a reduced standard deviation of heart rate or of alterations in the spectral element of the heart-rate-variability chronome, such as in the correlation dimension, an endpoint of deterministic chaos. These alterations can again serve for prehabilitation. On the basic side, the spectral element of the heart-rate-variability chronomes extends from focus on the heartbeat's period of about 1 second to periods in heart rate and its standard deviation that are numerical equivalents of about 10.5- and about 21-year cycles of solar activity. A seemingly unnatural physiologic rhythm or pattern (such as one of 81.6 hours) may correspond numerically to a purely physical environmental rhythm. For example, interplanetary magnetic storms, with their cycles as external chronome components, trigger myocardial infarctions, strokes, and traffic accidents. The systematic monitoring of external rhythms along with physiologic ones for the concurrent analysis of rhythms with longer and longer periods could detect alterations anywhere in and between the 1 cycle/sec and the 1 cycle/10.5- or 21-years regions of the spectrum. Chronobiominetic engineering for discovering both instantaneous and long- term chronorisk alterations can provide warnings of increased risk. If risk- lowering therapy is then instituted automatically, instrumented health care will be extended beyond the pacemaker-cardioverter-defibrillator, which focuses on the frequency of 1 cycle/sec. Instrumentation that automatically detects blood pressure that varies too much and heart rate that varies too little is needed for prompting prophylactic CHAT and CAHRV treatment. A database of reference values that can be used for chronodiagnosis is now accumulating.

Original languageEnglish (US)
Pages (from-to)152-187
Number of pages36
JournalBiomedical Instrumentation and Technology
Volume33
Issue number2
StatePublished - Mar 1 1999

Fingerprint

Dive into the research topics of 'Chronomes, time structures, for chronobioengineering for 'A full life''. Together they form a unique fingerprint.

Cite this