Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

BioA, a pyridoxal 5′-phosphate (PLP) dependent aminotransferase, catalyzes the second step of biotin biosynthesis, converting 7-keto-8-aminopelargonic acid (KAPA) into 7,8-diaminopelargonic acid (DAPA). Amiclenomycin (ACM) isolated from cultures of different Streptomyces strains is a potent mechanism-based inhibitor of BioA that operates via an aromatization mechanism, irreversibly labeling the PLP cofactor. However, ACM is plagued by inherent chemical stability. Herein we describe the synthesis of four inhibitors, inspired by ACM but containing an allylic amine as the chemical warhead, designed to both improve stability and operate via a complementary Michael addition-pathway upon enzymatic oxidation of the allylic amine substrate to an enimine. Acyclic analogue M-1 contains a terminal olefin as the pro-Michael acceptor. The synthesis of M-1 features an alkyne-zipper reaction and the Overman rearrangement as key synthetic operations. The cyclic analogues M-2/3/4 contain either an endocyclic or exocyclic olefin as the pro-Michael acceptor. These were all prepared using a common strategy employing DIBAL reduction of a precursor bicyclic lactam, followed by in situ Horner-Wadsworth-Emmons (HWE) olefination as the key synthetic steps.

Original languageEnglish (US)
Pages (from-to)6051-6058
Number of pages8
JournalJournal of Organic Chemistry
Volume77
Issue number14
DOIs
StatePublished - Jul 20 2012

Fingerprint

Dive into the research topics of 'Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis'. Together they form a unique fingerprint.

Cite this