Development of kinematic/kinetic performance tools in synthesis of Multi-D.O.F. Mechanisms

Ming Yih Lee, Arthur G. Erdman, Yevsey Gutman

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Kinematic and kinetic performance are important issues in designing multi-degree of freedom mechanisms such as robotic manipulators. In the engineering design stage, it is especially important that the designer can grasp the characteristics of the mechanism. The aim of this study is to develop a means of representing the kinematic and kinetic performance of the mechanism in such a way that the performance characteristics are quantified analytically and visible graphically to the designer in their entirety in the conceptual design stage. Various performance indices derived from the Jacobian matrix and its quadratic form. These performance indices are the local kinematic cross-coupling index, the local directional mobility index, and the local efficiency index. Graphical images of these performance characteristics using eigen-ellipsoid and workspace trajectory contours are introduced. Critical performance points in mechanism workspace are identified and elaborated for design considerations. Based on the graphical representation of these performance characteristics, design rules for achieving different performance objectives can easily be implemented. This method is applicable to computer-aided design of a mechanism and predetermination of its kinematic and kinetic performance.

Original languageEnglish (US)
Title of host publicationFinite Elements/Computational Geometry; Computers in Education; Robotics and Controls
PublisherAmerican Society of Mechanical Engineers (ASME)
Number of pages10
ISBN (Electronic)9780791806234, 9780791897768
StatePublished - 1991
EventASME 1991 Design Technical Conferences, DETC 1991 - Miami, United States
Duration: Sep 22 1991Sep 25 1991

Publication series

NameProceedings of the ASME Design Engineering Technical Conference


ConferenceASME 1991 Design Technical Conferences, DETC 1991
CountryUnited States

Bibliographical note

Funding Information:
The authors would like to thank the National Science Foundation for their support of this research under grant No. MSS-9012456. Also the help of Mark Benner in reviewing the manuscript is appreciated.

Publisher Copyright:
© 1991 American Society of Mechanical Engineers (ASME). All rights reserved.

Fingerprint Dive into the research topics of 'Development of kinematic/kinetic performance tools in synthesis of Multi-D.O.F. Mechanisms'. Together they form a unique fingerprint.

Cite this