Dislocation Interactions in Olivine Revealed by HR-EBSD

David Wallis, Lars N. Hansen, T. Ben Britton, Angus J. Wilkinson

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Interactions between dislocations potentially provide a control on strain rates produced by dislocation motion during creep of rocks at high temperatures. However, it has been difficult to establish the dominant types of interactions and their influence on the rheological properties of creeping rocks due to a lack of suitable observational techniques. We apply high-angular resolution electron backscatter diffraction to map geometrically necessary dislocation (GND) density, elastic strain, and residual stress in experimentally deformed single crystals of olivine. Short-range interactions are revealed by cross correlation of GND density maps. Spatial correlations between dislocation types indicate that noncollinear interactions may impede motion of proximal dislocations at temperatures of 1000°C and 1200°C. Long-range interactions are revealed by autocorrelation of GND density maps. These analyses reveal periodic variations in GND density and sign, with characteristic length scales on the order of 1–10 μm. These structures are spatially associated with variations in elastic strain and residual stress on the order of 10−3 and 100 MPa, respectively. Therefore, short-range interactions generate local accumulations of dislocations, leading to heterogeneous internal stress fields that influence dislocation motion over longer length scales. The impacts of these short- and/or long-range interactions on dislocation velocities may therefore influence the strain rate of the bulk material and are an important consideration for future models of dislocation-mediated deformation mechanisms in olivine. Establishing the types and impacts of dislocation interactions that occur across a range of laboratory and natural deformation conditions will help to establish the reliability of extrapolating laboratory-derived flow laws to real Earth conditions.

Original languageEnglish (US)
Pages (from-to)7659-7678
Number of pages20
JournalJournal of Geophysical Research: Solid Earth
Volume122
Issue number10
DOIs
StatePublished - Oct 2017
Externally publishedYes

Bibliographical note

Funding Information:
We thank David Kohlstedt and Steven Schneider for providing samples for this study and Andrew Turner for helpful discussions. We thank Greg Hirth and David Kohlstedt for their constructive reviews of the manuscript. D. Wallis, L.N. Hansen, and A.J. Wilkinson acknowledge support from the Natural Environment Research Council grant NE/M000966/1. T.B. Britton acknowledges support for his research fellowship from the Royal Academy of Engineering. Research data supporting this paper can be found on the Oxford Research Archive (http://www.ora.ox.ac.uk/).

Publisher Copyright:
©2017. American Geophysical Union. All Rights Reserved.

Keywords

  • HR-EBSD
  • dislocation
  • high-angular resolution electron backscatter diffraction
  • interaction
  • olivine
  • residual stress

Fingerprint

Dive into the research topics of 'Dislocation Interactions in Olivine Revealed by HR-EBSD'. Together they form a unique fingerprint.

Cite this