Displacement control of hydraulic actuators using a passivity based nonlinear controller

Meng Wang, Perry Y. Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

To increase the efficiency of hydraulic systems by eliminating valve throttling losses, a direct displacement open circuit is proposed to control a single rod hydraulic actuator. The circuit provides three control inputs, including the displacement of a variable displacement pump, the opening area of a proportional valve, and the position of a directional valve. Pump control has a low bandwidth, but the efficiency is high due to the lack of throttling losses. Valve control has a high bandwidth, but the throttling loss is high. A novel approach has been proposed to distribute the control efforts between the pump and the proportional valve considering both control bandwidth balancing and throttling loss reduction. The proportional valve will follow a high frequency opening profile, while the nominal valve opening is large, and the pump output flow will follow a low frequency demand. Experimental results validate the effectiveness of the proposed approach.

Original languageEnglish (US)
Title of host publicationASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Pages715-721
Number of pages7
DOIs
StatePublished - 2012
EventASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012 - Fort Lauderdale, FL, United States
Duration: Oct 17 2012Oct 19 2012

Publication series

NameASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Volume1

Other

OtherASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference, DSCC 2012-MOVIC 2012
Country/TerritoryUnited States
CityFort Lauderdale, FL
Period10/17/1210/19/12

Fingerprint

Dive into the research topics of 'Displacement control of hydraulic actuators using a passivity based nonlinear controller'. Together they form a unique fingerprint.

Cite this