Dynamic routing of energy-aware vehicles with Temporal Logic Constraints

Derya Aksaray, Cristian Ioan Vasile, Calin Belta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

This paper addresses a persistent vehicle routing problem, where a team of vehicles is required to achieve a task repetitively. The task is given as a Time-Window Temporal Logic (TWTL) formula defined over the environment. The fuel consumption of each vehicle is explicitly captured as a stochastic model. As vehicles leave the mission area for refueling, the number of vehicles may not always be sufficient to achieve the task. We propose a decoupled and efficient control policy to achieve the task or its minimal relaxation. We quantify the temporal relaxation of a TWTL formula and present an algorithm to minimize it. The proposed policy has two layers: 1) each vehicle decides when to refuel based on its remaining fuel, 2) a central authority plans the joint trajectories of the available vehicles to achieve a minimally relaxed task. We demonstrate the proposed approach via simulations and experiments involving a team of quadrotors that conduct persistent surveillance.

Original languageEnglish (US)
Title of host publication2016 IEEE International Conference on Robotics and Automation, ICRA 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3141-3146
Number of pages6
ISBN (Electronic)9781467380263
DOIs
StatePublished - Jun 8 2016
Externally publishedYes
Event2016 IEEE International Conference on Robotics and Automation, ICRA 2016 - Stockholm, Sweden
Duration: May 16 2016May 21 2016

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2016-June
ISSN (Print)1050-4729

Other

Other2016 IEEE International Conference on Robotics and Automation, ICRA 2016
Country/TerritorySweden
CityStockholm
Period5/16/165/21/16

Fingerprint

Dive into the research topics of 'Dynamic routing of energy-aware vehicles with Temporal Logic Constraints'. Together they form a unique fingerprint.

Cite this